
DeepCache: Revisiting Cache Side-Channel Attacks in Deep
Neural Networks Executables

Zhibo Liu
The Hong Kong University of Science

and Technology
Hong Kong, China
zliudc@cse.ust.hk

Yuanyuan Yuan
The Hong Kong University of Science

and Technology
Hong Kong, China
yyuanaq@cse.ust.hk

Yanzuo Chen
The Hong Kong University of Science

and Technology
Hong Kong, China
ychenjo@cse.ust.hk

Sihang Hu
Huawei Technologies
Shenzhen, China

husihang@huawei.com

Tianxiang Li
Huawei Technologies
Shenzhen, China

litianxiang4@huawei.com

Shuai Wang∗
The Hong Kong University of Science

and Technology
Hong Kong, China
shuaiw@cse.ust.hk

ABSTRACT

Deep neural networks (DNN) are increasingly deployed in hetero-
geneous hardware, including high-performance devices like GPUs
and low-power devices like mobile/IoT CPUs, FPGAs, and accelera-
tors. In order to unlock the full performance potential of various
hardware, deep learning (DL) compilers automatically optimize
DNN inference computations and compile DNN models into DNN
executables for efficient computations across hardware backends.

As valuable intellectual properties, DNN architectures are one
primary attack target. Since previous works already demonstrate
the abuse of cache side channels to steal DNN architectures from
DL frameworks (e.g., PyTorch and TensorFlow), we first study using
those known side-channel attacks against DNN executables. We
find that attacking DNN executables presents unique challenges,
and existing works can hardly apply. Particularly, DNN executa-
bles exhibit a standalone paradigm that largely reduces cache side
channel attack surfaces. Meanwhile, cache side channels capture
only limited behaviors of the whole DNN execution while facing
daunting technical challenges (e.g., noise and low time resolution).

However, we unveil a unique attack vector in DNN executables,
such that the cache-aware optimizations, which are extensively em-
ployed by contemporary DL compilers to harvest the full potentials
of hardware, would result in distinguishable DNN operator cache
access patterns, making model architecture recovery possible. We
propose DeepCache, an end-to-end side channel attack framework,
to infer DNN model architectures from DNN executables. Deep-
Cache leverages cache side channels as the attacking primitives
and combines contrastive learning and anomaly detection to enable
precise inference. Our evaluation using the standard Prime+Probe

∗Corresponding Author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA
© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0636-3/24/10
https://doi.org/10.1145/3658644.3690241

shows that DeepCache yields a high accuracy in exploiting com-
plex DNN executables under both the basic L1 cache attack and the
more practical but challenging last level cache (LLC) attack settings.

CCS CONCEPTS

• Security and privacy → Side-channel analysis and counter-

measures;

KEYWORDS

Cache Side Channel; DNN Executable; DNN Stealing

ACM Reference Format:

Zhibo Liu, Yuanyuan Yuan, YanzuoChen, SihangHu, Tianxiang Li, and Shuai
Wang. 2024. DeepCache: Revisiting Cache Side-Channel Attacks in Deep
Neural Networks Executables . In Proceedings of the 2024 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’24), October
14–18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3658644.3690241

1 INTRODUCTION

Despite the prosperous development of deep learning and its exten-
sive usage in diverse real-world applications, adopting and optimiz-
ing deep neural networks (DNNs) for various hardware backends
takes time and requires expensive expertise. To ease the deployment
of DNNs on heterogeneous devices, DL compilers are proposed to
automatically compile and optimize DNN models into DNN exe-
cutables running on multiple platforms [14, 49, 60]. Typically, a DL
compiler takes high-level DNN model specifications as inputs and
yields efficient executables optimized specifically for target hard-
ware backends. During compilation, a series of hardware-aware
optimizations and learning-assisted autotuning [14] are applied to
harvest the full computation power of the underlying hardware.

To date, we have seenDL compilers being adopted bymajor cloud
service providers like Google andAmazon [4, 21]. Remarkably, Ama-
zon spends considerable efforts to contribute the compiler code
to TVM, one of the most popular DL compiler projects supported
by Apache [6], and has already deployed TVM to accelerate its
Machine Learning as a Service (MLaaS) [32, 44]. As more and more
cloud service providers (e.g., Meta, AWS, and Google) [5, 15, 24]
are providing DNN inference services in a resource-sharing envi-
ronment for cost and profit reasons, DNN executables are expected

https://doi.org/10.1145/3658644.3690241
https://doi.org/10.1145/3658644.3690241

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhibo Liu et al.

to be increasingly applied to resource-sharing clouds to boost DNN
inference services. However, with that comes an emerging research
question that haunts the research community:

Is there a risk of valuable properties being leaked via remote
side channel(s) when using DNN executables?

Recent years have seen continuous works proposed to attack
DNNs with different side channels, including cache side chan-
nels [27, 28, 43, 79], electromagnetic (EM) emanation side chan-
nels [43, 85], power side channels [18, 20], bus snooping [30, 80, 92],
and rowhammer-based leakage [58]. These attacks steal valuable
intellectual properties (IP) like DNN model architectures and pre-
trainedweights.While they hold different threatmodels and assume
distinct attack scenarios, all previous works mainly focus on DNNs
deployed with popular DL frameworks like PyTorch and Tensor-
Flow. Meanwhile, although DL compilers are developing rapidly
and receiving increasing attention from industry and academia,
analyses and interpretations of side channels in their output (i.e.,
DNN executables) have long received little attention.

This paper aims to fill the research blank in side channel security
regarding DNN executables. Specifically, following the research
of prior works [11, 20, 30, 79, 85, 92], we explore the feasibility of
remotely stealing DNN model architectures via side channels. First,
given a standard, resource-sharing cloud environment, we revisit
existing side channel attacks in the new task of exploiting DNNs ex-
ecutables. With a comprehensive review, we report that all existing
attacks are infeasible to attack DNN executables. We attribute such
infeasibility to three major causes: 1) no shared memory regions, 2)
no shared third-party libraries, and 3) DL compiler optimizations;
details are in Sec. 3. Second, we reverse engineer DNN executables
and accordingly provide a thorough discussion on the cache-aware
optimizations employed by state-of-the-art DL compilers. We find
that cache-aware optimizations make the cache access patterns
of different model components (i.e., DNN operators) distinct and
distinguishable, thus unveiling a unique, novel, and critical attack
vector of cache side channels toward DNN executables.

Following the above study, we propose DeepCache, a novel au-
tomated, end-to-end cache side channel attack framework against
DNN executables. DeepCache is designed to be independent of
underlying cache side channels and compatible with different at-
tacking techniques (e.g., Prime+Probe [40]). Despite the difficulty in
distinguishing real world cache side channel observations derived
from L1 cache/LLC,1 we propose a series of specifically tailored
learning techniques and optimizations to process noisy cache ac-
cess traces. As a result, DeepCache can precisely infer DNN model
architectures (including DNN operator types and hyperparameters)
with an accuracy higher than 80% for many complex cases, regard-
less of the cache level at which the attack is launched. Moreover, we,
for the first time, justify how the layout optimizations employed
by DL compilers will further impede DNN model weight stealing
attacks, and show that DeepCache can precisely identify optimized
weight layouts and likely enhance weight stealing attacks. In sum,
this paper makes the following main contributions:

1LLC attack is deemed to be more difficult to exploit than the L1 cache attack. For
readers unfamiliar with the relevant background, we recommend referring to Sec III
in the pioneer paper [40] for a good explanation of the concepts. We also briefly list
the differences between the L1 cache and LLC attacks in Sec. 2.4

• We deliver the first study investigating the possibility of attacking
DNN executables deployed on resource-sharing environments
with cache side channels. While none of the existing attacks are
applicable to this scenario, we provide a detailed analysis of DNN
executables and pinpoint a new attack opportunity caused by
cache-aware optimizations.

• We propose a novel end-to-end DNN architecture stealing frame-
work, DeepCache, to remotely infer model architectures of DNN
executables with cache side channels as the attacking primitive.

• We evaluate DeepCache against DNN executables compiled from
real-world DNN models using two cutting-edge DL compilers.
With the L1 and LLC Prime+Probe as attacking primitives, respec-
tively, DeepCache achieves high accuracy in recovering model
architectures across all settings.

DeepCache presents a general framework to digest the traces
recorded by the cache side channels and infer the DNN architec-
tures. There are no restrictions for underlying side channel attacks,
and different cache side channels can be exploited to generate in-
put for DeepCache. We release our research prototype at [2] to
facilitate future research.

2 BACKGROUND

2.1 Deep Neural Network

DNN models consist of multiple connected DNN operators (e.g.,
convolutional layers, fully-connected layers, pooling layers), and
each operator involves massive matrix computations. A DNNmodel
is typically trained to learn weights that approximate a non-linear
map between input data and output for a specific task. While the
training process is computation-intensive and usually equipped
with GPUs, the trained model can be distributed to and deployed
on different types of hardware devices and even cloud environ-
ments [66]. The design and training of a DNN model involve a
considerable investment of expertise and computing power. Thus,
DNN models become an important IP concerned by attackers.

Nevertheless, we clarify that due to the complexity of DNNs,
no existing work aims to steal complete DNN IP remotely. Instead,
prior works attack different components separately (see Sec. 3).
Similarly, this work focuses on partial components (as illustrated
in Fig. 1), and is expected to collaborate with other works to steal
the full DNN. To ease the presentation, we summarize the DNN IP
in the following three major components.
DNN Architecture. The architecture denotes all operators in a
DNN, and each operator is specified by its type (e.g., Conv vs. Pool-
ing) and the hyperparameters (e.g., kernel size). In general, the
architecture decides how a DNN computes and serves as the base
of the remaining IPs. Nevertheless, the search space of operator
types and their hyperparameters is vast; exhausting possible archi-
tectures via brute force is impractical. Thus, most previous studies
aim to recover the victim DNN’s architecture from various side
channels [20, 27, 28, 30, 43, 79, 80]. This work, accordingly, also
focuses on recovering architecture. Consistent with existing works,
the following three types of operators are considered.
• Fully-connected (FC) layers (and cascaded activation functions2),
whose hyperparameters include the number of input neurons
and output neurons.

2For example, ReLU, Sigmoid, etc. The same applies to Conv.

DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Operator
Types

Hyper-
parameters

Computational
Graph

Weight
Layouts

Weight
Values

Side
Channel ① DeepCache Operator

Types
Hyper-

parameters

Weight
Layouts

DNN Architectures

DNN Weights

DNN Executable

Potential Weights
Stealing Attacks

② Bridging
weights
stealing

Remote
Memory
Leakage

(Possible)
Computational

Graphs

Recovering DNN model

Weight
Values

③ Search space
reduction

Figure 1: Attacking objectives and general pipeline. Deep-

Cache, as the starting step, mainly focuses on DNN archi-

tectures (①). Yet, DeepCache can bridge existing weights

stealing attacks (②) by recovering weight layouts, and help

reduce the search space of computational graphs (③, as dis-

cussed in Sec. 6.2) with recovered architectures.

• Convolutional (Conv) layers (and cascaded activation functions),
whose hyperparameters include the number of filters (i.e., #input
channels), the filter size, the output feature map size (i.e., #output
channels), and the stride.

• Pooling layers (e.g., max-/average-pooling), whose hyperparam-
eters include kernel size, stride, and padding size.
While the above three types subsume operators adopted in main-

stream DNNs, DeepCache is not limited to them. DeepCache sup-
ports an open set of operators, and can be smoothly extended to
new operators (see Sec. 5 and Sec. 4.4).
DNN Computational Graph. It is worth noting that not all DNN
models exhibit a sequential structure. Somemodels (e.g., ResNet [25])
use shortcuts to improve training efficiency. In general, DNN op-
erators are chained into a computational graph, which, as part of
the full model specification, indicates how the information flow
is passed from input to output. However, as discussed in existing
research [30, 79], connecting operators requires accurate data flow
tracking, which is usually unavailable with remote side channels.
DeepSniffer [30] and Hermes Attack [92] rebuild computational
graphs by monitoring the memory bus (PCIe) traffic, which requires
physical access and cannot be extended to the remote scenario.

This work does not take computational graph recovery as the
direct goal. Nevertheless, given the architecture of a DNN model
(i.e., a sequence of operators and corresponding hyperparameters),
it is much easier for the attacker to infer possible computational
graphs [28, 79]. Specifically, two operators can be connected only
if one operator’s output shape matches another’s input shape [41,
45]. Consistent with prior work [79], our evaluation shows that
recovering model architectures can largely reduce the search space
of possible computational graphs from 107 to less than 102 (see
Sec. 6.2 for details). Fig. 1 demonstrates the status of DeepCache
in a complete DNN stealing attack pipeline.
DNNWeights. Given the architecture and computational graph,
the weights (parameters) learned during training specify the func-
tionality of a DNN model, making weights one of the high-profile
attacking targets. Existing works discuss leaking weights via hard-
ware defects (i.e., RamBleed [37]) or monitoring and reversing
weights from PCIe traffic. Nonetheless, we discuss how optimized
weight layout (i.e., the shape of the weight stored in memory) will

DNN Exe PyTorch
Linear

Algebra Lib

Standalone

DNN
Model

DL
Compiler

Shared by Users

Resource-
sharing Env

Figure 2: Comparing DL frameworks and DNN executables.

prevent existing attacks (see Sec. 3.3). While DeepCache does not
aim to steal weights, we identify the optimized layouts along with
the architectures via the cache side channel. As demonstrated in
Fig. 1, identifying layouts fills the gap between architecture stealing
and weights stealing attacks to recover the complete DNN model.
2.1.1 Importance of DNN Architectures. Except for DNN weights
stealing attacks discussed in Fig. 1, many other DNN privacy attacks
rely on the complete knowledge of DNN architectures. Specifically,
the membership inference attacks [47, 64] aim to infer whether a
data sample was present in the training data. Such attacks usually
assume that knowledge about the DNN architectures is known in
order to prepare multiple models as inputs for inference algorithms.
Knowing the DNN architectures is also necessary for the DNN
knowledge stealing attacks [26, 84], which synthesize represen-
tative images from the image distribution in the training dataset.
The model extraction attacks [70], which seek to build a substitute
model that is close to the target model, also assume the attacker
knows the DNN architectures for substitute model training.

2.2 DL Compiler and DNN Executable

DL Compiler. Given a DNN model pre-trained with DL frame-
works like PyTorch, DL compilers take its high-level model speci-
fication (e.g., in the ONNX format [1]) as the input, and produce
standalone, efficient binary code directly running on hardware
backends. Usually, platform-agnostic and hardware-aware optimiza-
tions will be successively applied to the input model [14, 60, 71].
Platform-agnostic optimizations, often accompanied by high-level
graph-based model intermediate representations (IRs), conduct
transformations like operator fusion and constant folding. In con-
trast, hardware-aware optimizations handle low-level memory-
related operations and parallelization with platform-specific IRs.
DNN Executables. Typical DL frameworks like PyTorch leverage
third-party linear algebra libraries crafted by experts to speed up
DNN inference. Differently, DNN executables exhibit a distinct
execution paradigm. As shown in Fig. 2, instead of interpreting the
DNN model and calling linear algebra library APIs, DL compilers
generate standalone executables in which each DNN operator has
been specifically compiled and optimized for optimal efficiency [14].

While existing side channel attacks may target different devices,
including CPUs, FPGAs, and various hardware accelerators [11, 18,
79, 85], they primarily focus on DNN models deployed with DL
frameworks (e.g., PyTorch and TensorFlow). This paper presents
the first attack targeting DNN executables. Since GPUs have well-
optimized drivers and libraries provided by vendors, DL compilers
are primarily used for lower-power but cost-efficient hardware.
To be aligned with prior works on DNN executables [45, 77], we
present our work on CPUs, although our approach can be adapted
to various devices that are vulnerable to cache side channels.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhibo Liu et al.

Real-world Significance. DL compilation is a promising technol-
ogy that is growingly applied in real-world scenarios. For example,
Amazon and Meta use DL compilers to compile DNN models on
Intel x86 CPUs [32, 44]. A startup raised millions of dollars to ac-
celerate ML services in the cloud using DL compilers [52]. More
importantly, PyTorch 2.0 also started to use compilation techniques
to speed up model execution [57]. Overall, DL compilation and
DNN executables are increasingly essential to boost DNNs.

2.3 Cache Side Channels

Holistically speaking, the sharing and competition between dif-
ferent processes for cache resources result in cache side chan-
nels [40, 83]. Cache denotes a storage unit used to reduce the time
costs of accessing data from the main memory. On typical cloud
computing platforms, virtual machines owned by different users
may share the same cache, leading to potential secret information
leakage to unprivileged, co-located users. Specifically, an attacker
who shares the same cache with the victim can secretly and pas-
sively observe the cache access patterns of the victim process.

Flush+Reload [83] and Prime+Probe [40, 55] are the two most
well-studied cache side channels. Flush+Reload assumes sensitive
code or data is shared. Thus, the attacker can clean the shared cache
with the clflush instruction and observe the victim’s subsequent
behaviors by measuring the re-access time to the cache later. A fast
re-access means the victim has accessed the target memory address,
and a slow re-access means the opposite. Prime+Probe does not re-
quire any shared user-space memory pages and is more potent and
widely applicable. However, Prime+Probe cannot recognize specific
accesses to a cache line and only detects accesses to the monitored
cache set. Instead of flushing the cache in a ready-made manner,
Prime+Probe evicts all the data in the target cache set by filling
it with the attacker’s data, resulting in a low sampling rate and
noise when measuring access latency. Due to its higher generality
and practicality, DeepCache launches Prime+Probe attacks toward
DNN executables. Nevertheless, recent advances in cache side chan-
nels provide more precise and high-resolution attacks [17, 56]. Our
method can similarly use advanced attacks for more precise results.

2.4 L1 Cache Attack vs. LLC Attack

The modern cache is multi-level designed and uses a hierarchy of
memory stores based on varying access speeds to cache data. L1
(Level-one) cache is closest to the processor with a small size and
fast accessing time, and LLC, on the contrary, is orders of magnitude
larger and slower. L1 cache is private to a specific processor core,
posing a practical challenge to the attacker, who has to co-locate
on the same core as the victim. In contrast, the LLC side channel
is deemed a more realistic attack vector, giving LLC is typically
shared between cores. While Prime+Probe is proven adaptable
to LLC [40], several unique challenges exist, making exploiting
LLC side channel observations difficult. Precisely, LLC is sliced,
and memory traffic is uniformly distributed to the per-core LLC
slices with (usually undocumented) hash functions. Constructing
the eviction set requires more specific designs to fill target sets
over all slices. Secondly, LLC has higher associativity and longer
access latency. Consequently, probing an LLC set takes a longer
time, resulting in lower probing resolution and results that are
harder to analyze. Nevertheless, we reuse existing side channel

attack frameworks and consider both L1 cache and LLC attacks in
the evaluation to demonstrate the effectiveness DeepCache.

3 MOTIVATION

This section reviews existing DNN stealing attacks and discusses
the obstacles to attack DNN executables.

3.1 DNN Stealing

Table 1 compares DeepCache with relevant side channel-based
DNN stealing attacks. In general, existing works follow two differ-
ent threat models based on assumptions of the attacker’s capability.
We mark them as the physical and remote access models in Table 1.
Physical access-based attacks mainly focus on edge/IoT devices,
where the adversary can access the victim’s hardware devices. Dif-
ferently, remote access-based approaches present more powerful
attacks to extract model information from cloud services likeMLaaS.
The adversary is assumed to be able to run unprivileged processes
that co-locate on the same processor as the victim process.
Physical Access. Earlier works [11, 85] use EM side channels to
infer architecture information of neural networks from specific
IoT/edge devices and accelerators. Among them, CSI NN can also
recover model weights with a customized variant of differential
power analysis. Such EM-based side channel attacks usually assume
physical access to the victim device and require special EM probe
equipment (e.g., an oscilloscope). Besides, they only focus on simple
small models or Binarized Neural Networks (BNNs). Whether they
are scalable on modern DNNmodels is uncertain (marked as partial
support).

Differently, DeepSniffer [30] directly snoops the DRAM bus (or
uses EM side channels) to record memory access addresses and
volumes and then leverages ML techniques to infer model archi-
tectures. Hermes Attack [92] captures and reverses PCIe traffic to
recover DNN models. Moreover, since model weights are trans-
ferred with GPU PCIe without encryption, Hermes Attack can also
directly obtain DNN model weights. HuffDuff [80] extends the
bus snooping attack on sparse accelerators to deduce structures of
pruned DNNs. Since bus snooping provides accurate and noise-free
memory access addresses, bus snooping attacks could easily chain
DNN operators into the computational graph. However, such at-
tacks hold an assumption stronger than physical access that the
attacker can directly monitor the memory bus and PCIe events. We
refer to this assumption as hardware privilege in Table 1.

MaskedNet [18], on the other hand, assumes the architecture is
known and recovers model parameters with the power side channel
of FPGAs. Nevertheless, it can only attack BNNs (whose weights are
binary values), and extending it to DNNs is still an open question.
Remote Access. One recent power side channel-based model steal-
ing work, DeepTheft [20], leverages the Running Average Power
Limit (RAPL) interface provided by modern Intel and AMD proces-
sors. Notably, the RAPL delivers energy consumption information
of underlying hardware at a fine granularity for software power
management. DeepTheft takes such information and uses a learning-
based framework to predict the model architecture. While this at-
tack achieves high accuracy, RAPL requires user privileges, and
such an attack can be mitigated by disabling the RAPL interface.

DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

Table 1: Comparison with existing works. , , denote full support, partial support, and no support.

Side Channels Access Target Device Target Model Requirement

Target Model Objectives

Archit. Weights Layouts

CSI NN [11] Electromagnetic Physical ARM Microcontroller Small MLP&CNN EM Probe
DeepEM [85] Electromagnetic Physical Accelerator Binarized NN EM Probe
DeepSniffer [30] Bus Snooping or EM Physical GPU DNN Hardware Privilege
Hermes Attack [92] Bus Snooping Physical GPU DNN Hardware Privilege NA
HuffDuff [80] Bus Snooping Physical Sparse Accelerator Pruned DNN Hardware Privilege
MaskedNet [18] Power Physical FPGA Binarized NN Power Probe
DeepTheft [20] Power Remote CPU DNN RAPL Interface
Cache Telepathy [79] FR or PP* Remote CPU DNN Shared Cache&Mem
DeeepRecon [28] FR Remote CPU DNN Shared Cache&Mem
Hong et al. [27] FR Remote CPU DNN Shared Cache&Mem
GANRED [43] PP Remote CPU DNN Shared Cache
DeepSteal [58] Rowhammer Remote CPU+DRAM Quantized DNN Vulnerable RAM
DeepCache PP Remote CPU DNN Executable Shared Core or Cache
* FR denotes Flush+Reload and PP denotes Prime+Probe.

Other remote access works mainly use cache side channels to
recover model architectures. DeepRecon [28] and Cache Telepa-
thy [79], targeting ML frameworks running on CPUs with third-
party linear algebra libraries, leverage Flush+Reload or Prime+Probe
to detect matrix multiplications to infer hyperparameters of fully-
connected and convolutional layers. Specifically, Cache Telepathy
pre-analyzes linear algebra libraries to locate sensitive code in Gen-
eralized Matrix Multiply (GEMM) functions and demonstrates the
feasibility of inferring DNN architectures by monitoring such code.

Due to the limitation of cache side channels, the attacker cannot
accurately observe the memory access addresses. Thus, none of
them can recover the computational graph of the victim model.
Nevertheless, they managed to reduce the search space of possible
model architectures. Similarly, Hong et al. [27] leverage Flush+Reload
to narrow down the correct architectures of novel DNN models.

The above works observe the victim’s behaviors by exploiting
cache side channels, which demands shared memory regions be-
tween the attacker and the victim. Cache Telepathy leverages prior
knowledge of the GEMM execution patterns to apply Prime+Probe
in DNN stealing. However, it still requires shared GEMM functions.
Since DL frameworks widely use third-party linear algebra libraries
for matrix multiplications, such libraries are shared by different
DL processes and can be leveraged for cache side channel attacks.
However, shared memory is not always available, particularly in
the context of DNN executables. GANRED [43] proposes a more
practical side channel attack that does not require shared memory
or pre-analyzing libraries in advance. It recovers the correct model
architectures by repeatedly and incrementally generating an ad-
versary model and comparing the memory access patterns leaked
by the cache side channel. Nevertheless, as discussed in Sec. 3.3,
DL compilers may generate largely distinct binary code (and con-
sequently distinct cache access patterns) for similar models due to
optimizations. Thus, GANRED cannot apply to DNN executables.

Besides, DeepSteal [58] proposes the first model weights stealing
attack targeting quantized DNN models using rowhammer-based
memory leakage [37]. It targets RAM devices that are vulnerable
to the rowhammer attack [35] and repeatedly hammers neighbor-
ing memory pages to infer weights values. This work is, therefore,
limited by the capability and efficiency of contemporary rowham-
mer attacks. Besides, the memory layout of model weights may be
optimized to speed up memory access (see Sec. 4.1). This problem,

which can hinder existing model weights stealing attacks from
interpreting values leaked from memory into matrices, has been
overlooked by previous studies. For the first time, this paper points
out the necessity of identifying weight layout and proposes a prac-
tical solution accordingly.

3.2 Threat Model

This paper aims explicitly to attack DNN executables deployed in
resource-sharing clouds. The threat model is described below.
Black-box Remote Access.White-box cache side-channel attacks
have been proposed for decades, where attackers can pre-analyze
target software to identify sensitive code. In contrast, we assume
attackers can only arbitrarily invoke the DNN executable. Beyond
that, other information, including architectures, weights, training
data, and binary code, is unknown.
Unprivileged Attackers. We assume the attacker has no priv-
ileges other than those of a normal user. The attacker does not
possess adversarial probing devices, and cannot leverage system-
level interfaces to monitor the system states.
Hardware Resource Sharing. Consistent with previous cloud co-
residency attacks [8, 9, 19, 59, 73, 78, 79, 89], we assume the attacker
shares the hardware with the victimDNN executable. Depending on
the underlying side channel attack method, a shared cache (for LLC
attack) or a shared CPU core (for L1 cache attack) may be required.
The difference is that we do not assume any shared memory or
third-party linear algebra libraries accessible to attackers.

Besides, ML service providers tend to document and advertise
their DL compilation technologies, which are usually open-source
and maintained by the community, for propaganda [4]. We thus
reasonably assume the DL compiler is open and available to the
attacker. We also assume all DNN executables are optimized (the
default configuration of DL compilers) for efficiency.

3.3 Difficulty of Attacking DNN Executables

Since we aim to attack DNN executables remotely, side channels re-
quiring physical access or specialized devices (e.g., oscilloscope) are
unsuitable. We mainly discuss the difficulties of applying existing
remote cache side channels attacking DNN executables.
Standalone Executables. One of the major obstacles to reusing
existing attacks is that compiled DNNs are standalone executables,
which prevent existing attacks twofold. On the one hand, unlike

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhibo Liu et al.

DL frameworks that leverage handcrafted linear algebra libraries
to speed up inference, DL compilers generate computation-related
code during compilation and statically link it into the output binary.
Thus, attackers cannot expect to share memory regions with DNN
executables. While previous Flush+Reload attacks use page de-
duplication [7, 23, 88] to create shared regions, it does not apply
to DNN executables since no replicated data or code exists, which
prevents Flush+Reload from being used to attack DNN executables.

On the other hand, existing attacks rely on pre-analysis to iden-
tify sensitive code in shared libraries [27, 79]; notably, Cache Telepa-
thy conducts a thorough analysis of linear algebra libraries to infer
operator hyperparameters by observing the invocation of specific
sensitive functions. However, since the computation code in DNN
executables is specifically generated by DL compilers and varies
between different DNNs, such pre-analysis is not applicable. DNN
executables are black boxes to attackers, and no sensitive code can
be located, posing a new challenge for attacking DNN executables.
Model- and Hardware-aware Optimizations. Works relying
on Prime+Probe do not require shared memory. However, the
only existing solution[43] still does not apply to DNN executables.
GANRED assumes the same operator will have similar cache access
traces. However, during compilation, DL compilers first search for
graph-basedmodel-aware optimization opportunities (e.g., operator
fusion), then apply unique (machine learning autotuned) hardware-
aware optimizations to each operator. Therefore, a Conv belonging
to different models may have largely distinct cache access patterns
due to optimizations, and we cannot identify the victim model by
incrementally constructing a similar model.

4 DEMYSTIFYING SIDE CHANNEL LEAKAGE

AlthoughDNN executables cannot be attacked by prior side channel-
based model stealing works, with an in-depth analysis and reverse
engineering, we recognize that hardware-aware optimizations ex-
tensively applied by DL compilers (which intend to exploit the
performance potential of hardware) introduce new cache side chan-
nel leakage. More concretely, each optimized DNN operator (e.g.,
a Conv or an FC) shows a distinguishable and unique memory
access pattern, which can be observed using conventional cache
side channels (e.g., Prime+Probe). In the following, we elaborate
on how DL compilers apply optimizations to DNN operators, and
accordingly uncover how an operator (including its type, hyperpa-
rameters, and optimized weight layout) can be recognized from its
optimized memory access patterns.

4.1 Optimizations for Matrix Computations

Since massive matrix computations (e.g., multiplication) are in-
volved in DNN inference, DL compilers primarily leverage the
following two optimization schemes to improve efficiency.
Blocking for Cache Locality. Fig. 3(a) illustrates a conventional
matrix multiplication of 𝑂 = 𝐼 × 𝜃 . As marked by the black arrow,
elements in 𝑂 are sequentially calculated in every row. This way,
𝜃 is accessed by sequentially putting each column into the cache.
Since these columns are usually mapped to different cache lines
and the cache size is limited (e.g., 32 KB), cache misses frequently
occur during the computation. DL compilers leverage blocking to
improve the cache locality. As shown in Fig. 3(b), the output matrix
𝑂 is chunked into blocks, such that when computing within one

O I θ

(a) Sweeping θ results in low memory locality.

θ

(b) Blocking results in high memory locality.

IO

Column 1 Column 2 Column 3 Column 4 …
Access pattern of θ:

Column 1 Column 2 Column 1 Column 2 …
Access pattern of θ:

Cache Misses

Cache Hits

Figure 3: Memory access patterns before/after blocking.

block, accesses to 𝜃 are limited to only several columns. Since these
columns are iteratively accessed, the cache hit rate is improved.

xmm0

xmm1

1 2

3
1 2

3
1 2

3
1 2

3 4

1

1
1

2 3 4

2 3 4

2 3 4

1 2 3 4

input matrix
shape (4, 2, 2) memory layouts

1 1 1 1

2 2 2 2

3 3 3 3

4 4 4 4

before opt after opt
mulps xmm0, xmm1

low

high

high

1 1 1 1 xmm0

movss xmm0, [mem]

× × × ×

Figure 4: Example of vectorization optimization.

Vectorization for Parallel Computation. Single Instruction Mul-
tiple Data (SIMD) instructions provided by modern CPUs can read
consecutive memory and perform the same operation on multiple
data (which constitute a vector) in parallel. The right side of Fig. 4
shows two SIMD instructions, in which movss reads four floats
sequentially, and mulps takes two vectors (xmm0 and xmm1 registers)
and writes results in xmm0.

In order to speed up matrix computations with SIMD, DL compil-
ers tend to rearrange the memory layouts of matrices to conform to
the computation pattern of SIMD instructions. As shown in Fig. 4,
given a matrix of shape (𝑁, ·), DL compilers optimize its memory
layout as (𝑁 /𝐾, ·, 𝐾), where 𝐾 is a multiple of 4. Thus, the original
𝑁 matrix computations are optimized as 𝐾 parallel groups of 𝑁 /𝐾
computations. Since all previous attacks only assume architecture
is known while ignoring potentially altered memory layout, this
optimization may prevent existing weights stealing attacks [58, 77],
i.e., attackers cannot recover the correct matrix from dumped bytes
values without knowing the optimized memory layouts. This work
potentially lessens this problem for previous stealing attacks by
identifying the weight layouts.

4.2 Leakage in Optimizations

While the above optimizations improve the efficiency of DNN exe-
cutables, they also implicitly give attackers an opportunity to peek
at DNN architectures. Without loss of generality, we consider Conv

DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

a representative example to demonstrate the impact of optimiza-
tions. Below, we illustrate how distinct loop structures derived from
optimizations can be treated as a unique identifier for an operator.

def Conv(I, W, O):
output channels
for oc in range(256):

output height
for oh in range(14):

output width
for ow in range(14):

lines 2-7: each output element
input channels
for ic in range(128):

kernel height
for kh in range(3):

kernel width
for kw in range(3):

v_1 = oh * stride + kh
v_2 = ow * stride + kw
O[1][oc][oh][ow] += \

I[1][ic][v_1][v_2] * \
W[oc][ic][kh][kw]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19

low
memory
locality

Figure 5: Example of a naive Conv without optimizations.

Computations in Conv. Fig. 5 shows a conventional Conv im-
plementation without optimizations. In Fig. 5, the input size is
(128, 29, 29), and the output size is (256, 14, 14). The size of weight
𝑊 is (256, 128, 3, 3), where (3, 3) denotes the kernel size. Lines 2-7
walk through every element in the output, and lines 10-19 calculate
the output value. Since the memory read at line 18 visits different
elements in matrix 𝐼 every time, this implementation manifests a
low memory locality, resulting in a low cache utilization.
Optimized Conv Computation. As mentioned in Sec. 4.1, DL
compilers use blocking to improve the cache locality. More specifi-
cally, DL compilers will optimize the layout of weight𝑊 as shape
(256/𝐾𝑂 , 128/𝐾𝐼 , 3, 3, 𝐾𝐼 , 𝐾𝑂). The optimal factors 𝐾𝐼 and 𝐾𝑂 are
decided by DL compilers. We now elaborate on how these opti-
mization factors, together with the operator’s hyperparameters,
uniquely determine the loop structure in the generated binary code.

Fig. 6 shows the optimized Conv implementation, where 𝐾𝐼 = 8,
𝐾𝑂 = 32. Accordingly, input and output matrices are reshaped into
(128/𝐾𝐼 , 29, 29, 𝐾𝐼) and (256/𝐾𝑂 , 14, 14, 𝐾𝑂). The highest dimen-
sion (i.e., channels) of the output (input) matrix is split into two
dimensions, i.e., oc_outer (ic_outer) and oc_inner (ic_inner).
The loops are then permutated to calculate the results block by
block. Optimized code in Fig. 6(a) shows better memory locality as
accesses to the same elements are clustered. Furthermore, the inner
loops can be unrolled. As a result, DL compilers may use SIMD
instructions (e.g., mulps) to speed up multiplication operations with
parallelism, as shown in Fig. 6(b).
Unique Identifier. DL compilers decide how to optimize a DNN
operator (e.g., choosing block size, permuting, and unrolling the
loops) according to its hyperparameters and model architecture.
For example, as in Fig. 6(b), Conv with different numbers of output
channels will result in different oc_outer (oc_inner) values. Con-
sequently, distinct loop structures are exhibited in binary code. In
short, we observed that:
Each operator will be specifically optimized according to its
hyperparameters by the DL compioler, leading to different loop
structures in compiled low-level code.

Specifically, given the model architectures, including operators
and hyperparameters, the DL compiler uniquely determines op-
timization factors that can achieve optimal performance, i.e., the
optimized loop structures only depend on the model architectures
regardless of model weights. Hence, we take the consistent and
deterministic loop structures as an operator’s unique identifier.

4.3 Observable Cache Access Patterns

Intuitively, DNN inference is a long sequence of matrix computa-
tions. We reasonably hypothesize that the optimized loop structure
can result in distinguishable cache activities due to the massive
memory accesses. Since real cache side channel observations are ex-
tremely hard for humans to recognize, to ease readers’ understand-
ing and to validate our assumption, we use Intel Pin [48], a dynamic
binary instrumentation tool, to mimic noise-free Prime+Probe side
channel observations [40, 55]. Nevertheless, our evaluation uses
real world LLC/L1 cache side channels in practical settings (details
in Sec. 6). Fig. 7 shows examples of cache access traces from three
Conv3, whose statistics are listed in Table 2. Each row in a trace
represents a cache state observed in one round of probing, where
dark and light pixels denote cache hits and misses, respectively.

Table 2: The statistics of operators in Fig. 7.

kernel #input #output model compilersize channels channels
Conv A 3 128 128 ResNet18 TVM
Conv B 3 128 256 VGG16 TVM
Conv C 1 256 512 ResNet18 Glow

LoopI and LoopO. In Fig. 7, the pattern boundaries are marked by
the red dashed box. For both compilers, we can observe certain
patterns periodically appearing. Also, the patterns and their period
vary with operators.4 In particular, we note that:

Each operator’s cache activities can be uniquely depicted with
𝐿𝑜𝑜𝑝𝐼 and 𝐿𝑜𝑜𝑝𝑂 , which are defined below.

We define 𝐿𝑜𝑜𝑝𝐼 and 𝐿𝑜𝑜𝑝𝑂 from the attacker’s perspective.
Since binary is deployed remotely, the attacker cannot directly
infer loop structures from observed traces due to the limitation of
cache side channels. Instead, we can approximate a mapping from
cache side channel observations to loop structures. Here, we use
𝐿𝑜𝑜𝑝𝐼 (inner loop) to denote the pattern itself (corresponds to the
optimized loops of “high memory locality” in Fig. 6(a)) and 𝐿𝑜𝑜𝑝𝑂
(outer loop) to represent the frequency of a pattern’s occurrence
(which depends on the outer loops that traverse different blocks in
the output, as shown in Fig. 6(b)). The 𝐿𝑜𝑜𝑝𝐼 and 𝐿𝑜𝑜𝑝𝑂 , combined
together, can be viewed as the representation of optimized loop
structures observed via cache side channels.

Ideally, recognizing 𝐿𝑜𝑜𝑝𝐼 and 𝐿𝑜𝑜𝑝𝑂 from side channel obser-
vations enables identifying a DNN operator (i.e., the operator type
and hyperparameters). Nevertheless, side channel observations are
highly noisy; for example, one iteration of Prime+Probe could take
3Since a complete trace is too long to be presented in the paper, the traces shown in
Fig. 7 are short snippets that are long enough to demonstrate the patterns.
4Note that although Fig. 7 only shows L1 cache access traces, the discussion and
conclusions in Sec. 4 are general and robust across different cache hierarchy levels. As
demonstrated in Sec. 6, DeepCache can leverage different levels of cache access traces
to infer model architectures.

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhibo Liu et al.

for oc_outer_fused_oh in range(8*14):
for ow_outer in range(2):

for ic_outer in range(16):
for kw in range(3):

for ic_inner in range(8):
for kh in range(3):# unrolled
for ow_inner in range(7):# unrolled
for oc_inner in range(32):# unrolled

ow = ow_inner + ow_outer * 7
oh = oc_outer_fused_oh % 8
oc_outer = oc_outer_fused_oh / 14
iw = ow * stride + kw
ih = oh * stride + kh
3*7*32 --> 672 multiplication
can be represented as 168 mulps insts
...

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(b) Example of Conv with vectorization.

for oc_outer_fused_oh in range(8*14):
for ow_outer in range(2):

for ic_outer in range(16):
for kh in range(3):

for kw in range(3):
for ic_inner in range(8):

for ow_inner in range(7):
for oc_inner in range(32):

ow = ow_inner + ow_outer * 7
oh = oc_outer_fused_oh % 8
oc_outer = oc_outer_fused_oh / 14
iw = ow * stride + kw
ih = oh * stride + kh
O[1][oc_outer][oh][ow][oc_inner] += \
I[1][ic_outer][ih][iw][ic_inner] * \
W[oc_outer][ic_outer][kh][kw][ic_inner][oc_inner]

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16

(a) Example of Conv with blocking.

higher
memory
locality

split & permutated
original:
for ic in range(128)
// 128 = 16 * 8

𝐿𝑜𝑜𝑝𝐼

𝐿𝑜𝑜𝑝𝑂

Figure 6: Example of a Conv with optimizations.

thousands of CPU cycles, during which later cache activities over-
write many previous activities. In Sec. 5, we tackle the challenge of
recognizing 𝐿𝑜𝑜𝑝𝐼 and 𝐿𝑜𝑜𝑝𝑂 from noisy side channels.

(a) Trace of Conv A. (b) Trace of Conv B. (c) Trace of Conv C.

Figure 7: Examples of cache access traces logged by Intel Pin.

The borders of patterns are marked with red dashed boxes.

4.4 Generalization

This paper focuses on three main types of operators that form the
cornerstone of mainstream DNNs. However, DeepCache is not
limited to specific operator types. Since operators used to consti-
tute DNNs almost always contain extensive memory accesses and
floating-point arithmetics, we reasonably assume they will present
observable cache access patterns under typical cache side channels.
Therefore, they are analyzable, following the same strategy used in
this section. Meanwhile, according to our observation, DL compilers
generate optimized loop structures to handle floating-point values
regardless of operator type, reinforcing our attack’s feasibility on
other operators. From another perspective, our attack framework
makes no assumptions about the function and behavior of target
operators; it thus shall be smoothly extended to other operators.

Moreover, as discussed in Sec. 5, with several careful design con-
siderations, DeepCache supports an open set of operators; extend-
ing DeepCache for new unknown operators is technically straight-
forward without human expertise. Besides, operators considered
in this study (i.e., Conv, FC, and Pooling) are representative, sub-
suming most operators in modern DNNs. For example, typical NLP

operators, including RNN, GRU, and LSTM, are made up of basic FC
operators. We confirm that during compilation by contemporary
DL compilers, those NLP operators are broken down into FCs, and
thus can naturally be handled by DeepCache.

5 DESIGN OF DEEPCACHE

As mentioned in Sec. 4.3, obtaining precise cache activities is chal-
lenging due to noise, making recovering loop structures challenging.
However, we do not need to identify full cache activities — vague
patterns embedded in cache traces are enough to decide 𝐿𝑜𝑜𝑝𝐼 and
𝐿𝑜𝑜𝑝𝑂 . Accordingly, DeepCache is designed as two main stages: 1)
feature extraction and 2) trace segmentation, as illustrated in Fig. 8.
Overview. DeepCache takes side channel observations as input.
Specifically, we use Prime+Probe to observe cache states when the
victim DNN executable is running. Each state is a binary vector of
size 𝑆 (𝑆 denotes the number of monitored cache sets) consisting of
only 0s and 1s, where 0 denotes a cache miss, and 1 denotes a cache
hit. After 𝑁 times of probing, we have a matrix of size (𝑁, 𝑆) as
the cache access trace. Then, for an operator, the feature extraction
stage extracts a abstracted feature vector that has much lower
dimensions than the original side channel trace. Simultaneously,
the trace segmentation phase outputs an integer as 𝐿𝑜𝑜𝑝𝑂 . To do so,
we formulate it as an “anomaly detection” problem [3, 10, 38, 61],
where we view the segment point as an “abnormal” state (Sec. 5.2).

DNN
Executable

Prime&
Probe

shared device

Cache
Traces

Contrastive
Learning

Anomaly
Detection

𝐿𝑜𝑜𝑝𝑂

𝐿𝑜𝑜𝑝𝐼

Identifier
Database

Identifier

Candidate
Operators

Trace Segmentation

Feature Extraction

Figure 8: Overview of DeepCache.

Regression. Unlike previous works that treat operator recovery
as a classification task [20, 30], we formulate this problem as a
regression task (see Benefits below for comparison). Specifically,
we first prepare a collection of operators and build a database
using their 𝐿𝑜𝑜𝑝𝐼 and 𝐿𝑜𝑜𝑝𝑂 (which constitute a pair). Once we

DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

get the (𝐿𝑜𝑜𝑝𝐼 , 𝐿𝑜𝑜𝑝𝑂) from a side channel trace, we compute their
similarity with those in the database. Each operator record in the
database is accompanied by its type, hyperparameters, and optimized
layout. Our recovery result will be deemed as the operator whose
(𝐿𝑜𝑜𝑝𝐼 , 𝐿𝑜𝑜𝑝𝑂) has the highest similarity.
Benefits. Our formulated regression task enables the following
benefits. First, the number of possible operators is huge since the
hyperparameters often consist of multiple variables. Forming a clas-
sification of massive output classes is fundamentally challenging
and data-intensive. As will be introduced in Sec. 5.1, our re-formed
regression task can alleviate this hurdle by leveraging the con-
trastive learning paradigm. Second, with the fast development of
the DNN community, new operators are continuously designed.
Adding support for new operators requires rebuilding a classifica-
tion model. We, in contrast, only require adding the new operators
and their 𝐿𝑜𝑜𝑝𝐼 and 𝐿𝑜𝑜𝑝𝑂 in the database.

5.1 Feature Extraction

A

A'

trace pieces

B

B'

feature vectors

similar

dissimilarCache
Side Channel

Conv B

Conv A

…

operators

……

F(B')

F(B)

F(A')

F(A)

ResNet

Figure 9: The overview of contrastive learning.

Contrastive Learning. As illustrated in Fig. 9, the feature ex-
traction module F aims to yield closely similar feature vectors
(i.e., 𝐿𝑜𝑜𝑝𝐼) for side channel traces logged from the same operator.
That is, given two side channel traces 𝐴 and 𝐴′ logged from the
same operator, despite the noise in 𝐴,𝐴′, the feature extraction
module is expected to be resilient and outputs F (𝐴) ≈ F (𝐴′).
However, if two traces 𝐴 and 𝐵 are logged from different operators,
we require the extracted features F (𝐴) and F (𝐵) to be sufficiently
distinct. Intuitively, since both the operator itself and noise can
affect the resulting side channel observations, the aforementioned
feature-contrast paradigm can force the feature extraction module
to neglect noise and focus on valuable information.

Specifically, we adopt machine learning techniques to implement
the feature contrast. F is implemented as a typical image classifi-
cation model (i.e., ResNet [25]), except outputs a low-dimensional
vector instead of confidence scores. The input trace is fed into F
as a single-channel image. By training F with a rich set of locally
collected operators and their side channel traces, F can learn to
recognize visual patterns discussed in Sec. 4.3, and implicitly rule
out noise. To further make F resilient to the unalignment men-
tioned above, during training, F takes a snippet randomly cut from
a trace as input, rather than the full trace. It is worth noting that we
let F ’s output have much lower dimensions (e.g., 128 dimensions)
than its input; this way, we can further help F rule out irrelevant
information and focus on informative records.
Feature Similarity. During training, we require an effective and
efficientmetric tomeasure the similarity between extracted features.

Since the extracted features are vectors, we compute their similarity
via dot product. The dot product𝑢 ·𝑣 increases when𝑢 and 𝑣 become
more similar. Compared with distance metrics of vectors, similarity
derived from dot product is more precise and computation-efficient.
Training Loss Function. To train F , we randomly sample 2𝑛 side
channel traces {𝑥1, 𝑥 ′1, 𝑥2, 𝑥

′
2, ..., 𝑥𝑛, 𝑥

′
𝑛} collected from operators

{1, 2, ..., 𝑛} in each training iteration. 𝑥𝑖 and 𝑥 ′𝑖 are two different
traces (due to noise) collected from operator 𝑖 . Let 𝑃 (𝑖 |𝑥 𝑗) denote
the probability (from F ’s view) that 𝑥 𝑗 is produced by operator 𝑖 ,
computed as

𝑃 (𝑖 |𝑥 𝑗) =
𝑒𝑥𝑝 (F (𝑥𝑖)⊺F (𝑥 𝑗))∑𝑛

𝑘=1 𝑒𝑥𝑝 (F (𝑥𝑘)⊺F (𝑥 𝑗))
. (1)

Then, we compute the joint probability 𝑃𝑖 depicting that, 𝑥 ′
𝑖
is

produced by operator 𝑖 whereas other 𝑥 𝑗 (𝑗 ≠ 𝑖) are not, as

𝑃𝑖 = 𝑃 (𝑖 |𝑥 ′𝑖)
∏
𝑗≠𝑖

(1 − 𝑃 (𝑖 |𝑥 𝑗)). (2)

Therefore, F will be optimized to maximize all 𝑃𝑖 . To void the
numerical issues induced by the factorial operation, we further
compute the logarithm of 𝑃𝑖 . The training is driven by minimizing
the loss function, which is −∑

𝑖 log 𝑃𝑖 .

5.2 Trace Segmentation

Conv

Conv

Conv

Conv

DeConv

DeConv

DeConv

DeConv

𝓍

input
cache matrix

𝓍’

Conv
LSTM

Conv
LSTM

Conv
LSTM

Conv
LSTM

reconstructed
cache matrix

loss

Encoder Decoder

Low reconstruction loss

High reconstruction loss

Correlation
Matrix

sweep

Figure 10: The structure of encoder-decoder network.

Side Channel Traces as Time Series. The trace segmentation
module aims to identify 𝐿𝑜𝑜𝑝𝑂 . We treat each input trace as a
time series of multiple variates, i.e., each cache set is viewed as a
binary variate with the value of 0 or 1. Each row in the input trace
denotes one element in the time series and the status of each variate
changes over time. Our manual analysis shows that most adjacent
rows change smoothly (Fig. 7). In most cases, each row is similar to
the result of slightly shifting preceding rows.

To interpret, recall that each cache access pattern corresponds to
computations within inner loops (in Sec. 4.3), where the accessed
memory addresses often change continuously. Thus, the segment
point (the interval between two patterns) can be deemed an ab-
normal sequence element. This observation is general and widely
applicable because it captures the commonality of DNN operators.
Anomaly Detection via Reconstruction. Based on the above
observations, we formulate the trace segmentation problem as an
anomaly detection task over time series. Intuitively, anomaly de-
notes the minority trace elements that are distinct from others.
Since traces of different operators are distinct, anomaly detection

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhibo Liu et al.

should be performed among records from the same operator. Also,
given that new (unknown) operators may be designed in the future
and DeepCache is expected to support them, the anomaly detection
should be agnostic to an operator’s implementation. Therefore, the
following procedure is proposed.

As illustrated in Fig. 10, we first prepare an encoder E and a
decoder D. For each sequence element 𝑥 , the encoder E converts
it into an intermediate variable 𝑧 = E(𝑥) and the decoder D recon-
structs 𝑥 ′ = D(𝑧). To avoid D(E(𝑥)) simply copying 𝑥 , we let 𝑧
have much lower dimensions than 𝑥 . To train E and D, we use all
sequence elements as the training data. Since only a few elements
are segment points, the (implicit) reconstruction rules learned by
E and D are dominated by normal elements within patterns and
likely do not apply to the segment points. As a result, E and D will
fail to reconstruct segment points, i.e., 𝑥 ≠ D(E(𝑥)). Note that the
above procedure does not rely on specific implementations and can
apply to any (unknown) new operators.

5.2.1 Convolutional-based Encoder-Decoder Network. As shown
in Fig. 10, the encoder-decoder network consists of 4 Conv-based
encoders and decoders, which are initially proposed for the image
segmentation task [46, 81]. Besides, we employ the ConvLSTM [39,
63, 67] to enhance the encoding with temporal information.
Spatial Information. The encoder part, similar to CNN models
that try to extract distinguishing features from the input image, is
composed of several sequential Conv layers and is used to encode
input into feature maps with smaller sizes. For the 𝑙-th Conv layer,
assuming the input tensor is X𝑙 ∈ R𝑛×𝑛×𝑑 , the output is defined as

X𝑙+1 = 𝑓 (𝑊 𝑙 ∗ X𝑙 + 𝑏𝑙), (3)

where ∗ denotes the convolutional operation, 𝑓 (·) denotes the acti-
vation function,𝑊 𝑙 and 𝑏𝑙 denote the weights and biases.,

The decoder part consisting of a sequence of deconvolutional
layers (DeConv) [46] takes the encoded feature maps as input and
tries to recover the original input. Each DeConv layer is used to
uncompress the output of previous layer. The output of the last
DeConv layer represents the reconstructed matrices and will be
compared with the input matrices. The training objective is defined
as the reconstruction errors between input and recovered matrices.
Frequency and Correlation of Cache Activities. As shown in
Fig. 7, certain cache sets are frequently accessed (the dark vertical
“lines” in Fig. 7). Also, some cache sets are correlated, i.e., they may
be accessed simultaneously or never accessed at the same time. The
frequency and correlation of cache activities are also necessary to
identify patterns in the side channel trace. Therefore, we encode
such correlations into a correlation matrix𝑀 as the segmentation
module’s input. The (𝑖, 𝑗)-th entry in𝑀 is calculated as:

𝑚𝑖, 𝑗 =

∑𝑛
𝑡=0 (𝑣𝑡𝑖 + 𝑣

𝑡
𝑗
)

2𝑛
, (4)

where 𝑣𝑡
𝑖
is the 𝑖-th cache set’s status at position 𝑡 in the sequence

(i.e., the 𝑡-th row). To interpret, for diagonal elements𝑚𝑖,𝑖 , a higher
value indicates that the 𝑖-th cache set is more frequently accessed.
For non-diagonal elements𝑚𝑖, 𝑗 (𝑖 ≠ 𝑗), a higher value implies that
they are often accessed together.𝑀 is later fed into E for encoding.
Temporal Information. Given that a cache status is usually tem-
porally correlated with previous states, we intuitively guide the

encoder and decoder to leverage such temporal information. This is
implemented by stacking multiple E and D and connecting them
with ConvLSTM [63], an effective sequential neural network compo-
nent aiming at capturing temporal information from 2D sequences.
As shown in Fig. 10, each E𝑖 takes the output from E𝑖−1 and passes
its output to E𝑖+1 and the 𝑖-th ConvLSTM cell. Then, each D𝑖 takes
outputs from both D𝑖+1 and the 𝑖-th ConvLSTM cell. This way, the
temporal information is encoded.

6 EVALUATION

6.1 Setup

Platform. We evaluate DeepCache on a victim platform equipped
with Intel Core i7-9700K. The processor has a 32 KB L1 data cache
for each core and a 12 MB last level cache (LLC). Our attack is
conducted on Ubuntu 22.04. The models used in DeepCache are
trained on another platform with Nvidia GPUs.
DNN Models. We collect all image classification models from the
ONNX Zoo [54] as our dataset. In total, our dataset includes 372
operators from 30 commonly used real-world CNN models (e.g.,
AlexNet [36], SqueezeNet [31], and MobileNet [29]) trained on
the ImageNet dataset. Although real-world attackers can take ad-
vantage by including as many as possible common operators and
models in the database, for a fair evaluation, we ensure that target
victim models (i.e., VGG16 [65] and ResNet18 [25]) are not used
as training data. All models are compiled and fully optimized with
two state-of-the-art DL compilers, TVM [14] and Glow [60].
Implementation. The DeepCache framework is implemented
in Python, with about 3K lines of code. Besides, we leverage the
cache side channel toolkit Mastik [82] to implement the L1 data
cache Prime+Probe attack. As for the LLC attack, we reuse the
framework released by a recent work, Prime+Scope [56]. Following
prior works, we leverage huge pages to build eviction sets during
the LLC attack [40, 56]. Due to the large amount of LLC sets (1024
in our device), monitoring all sets leads to an unacceptable low time
resolution. Thus, we monitor random consecutive 64 LLC sets.

To collect noise-free cache access traces (as shown in Fig. 7)
for understandable presentations and an easier case study, we im-
plement an Intel Pin [48] tool to mimic the Prime+Probe attack.
Specifically, we instrument all memory access instructions and
maintain a cache state describing which cache sets are visited. All
memory accesses are converted into L1 cache set indexes by ex-
tracting the lower 6-12 bits from addresses during runtime. We
output and reset the cache state each time after an appropriate time
interval (the time of 100 memory accesses in our implementation).

Below, Sec. 6.2 and 6.3 demonstrate the capability of DeepCache
when attacking real-world DNN executables. Sec. 6.4 presents a case
study to explain differences in results across attacking primitives
and DL compilers.

6.2 DeepCache with L1 Cache Attack

To evaluate the accuracy of DeepCache, we take ResNet18 and
VGG16 as our test data, the statistics of which are shown in Table 3.
Bothmodels are deepmodels widely used in real-world applications,
while VGG16 is a typical sequential model, and ResNet18 is a repre-
sentative non-sequential model with shortcuts. Note that we have
no requirement for the input of victim DNN, i.e., we observe the

DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

cache access patterns instead of the exact numerical values during
DNN inference. Thus, attackers do not need to scope valid inputs
of the victim DNN, which may be private (e.g., medical images),
and any values (e.g., random noises) can be used as the inputs.

Table 3: The statistics of models in the test dataset.

#Operators #Hyper- #Dimensions of
parameters Mem Layouts

VGG16 21 68 93
ResNet18 23 86 126

Following the discussion in Sec. 4, this section first shows the
results of equipping DeepCache with the L1 cache side channel
attack. Then, Sec. 6.3 extends the evaluation of DeepCache to
the more practical LLC attack. Table 4 summarizes the results re-
garding operator types, hyperparameters, and optimized memory
layout recovery. DeepCache achieves high accuracy when recov-
ering operator types for TVM-emitted DNN executables. While
DeepCache shows relatively low accuracy when recovering hyper-
parameters and memory layout for Glow-emitted DNN executables,
we attribute it to Glow’s less intensive optimization strategies (see
Sec. 6.4 for the explanation). Besides, the results shown in Table 4
do not reveal the upper-bound capability of DeepCache. Sec. 6.3
reports that DeepCache’s performance can be largely enhanced
with the LLC attack, presenting much higher accuracies threaten-
ing potential real-world applications. This section mainly aims to
validate the conclusions in Sec. 4 and demonstrates the usefulness
of DeepCache in stealing valuable DNN information. Below, we
provide a more comprehensive discussion of the results in Table 4.

Table 4: The performance of DeepCache with L1

Prime+Probe attack in recovering DNN architectures,

and memory layouts.

TVM Glow
ResNet VGG ResNet VGG

Operator Types 95.2% 88.2% 94.4% 81.3%
Hyperparameters 96.2% 89.5% 71.9% 87.5%
Mem Layouts 100% 100% 71.0% 100%

Technically, recovering hyperparameters and optimized memory
layouts is more challenging than recovering operator types due to
a larger search space. Nevertheless, Table 4 reports an even higher
accuracy of recovering hyperparameters/memory layouts than re-
covering operator types for some cases. With manual inspection,
we find that DeepCache fails to infer some operators that do not
have parameters (e.g., pooling) while still correctly recovering all
optimized parameter layouts for other operators (100% in Table 4).

Conceptually, DNN executables exhibit a standalone paradigm
that largely reduces cache side channel attack surfaces. Even more,
cache side channels naturally face technical challenges, including
noise and low time resolution, and consequently, capture only lim-
ited behaviors of DNN execution. This explains the challenge and
the less than 100% accuracy of DeepCache. However, we interpret
that the achieved accuracy is sufficiently high to pose a real-world
threat to the security of DNN services, as discussed below.
Computational Graph. As mentioned in Sec. 2, DeepCache does
not aim to recover the computational graph directly. Nevertheless,
recovered operators can significantly reduce the search space. In
particular, if we conservatively assume that the attacker knows

Conv A

[64, 56, 56]

[128, 28, 28]

Input

Output

In: [64, 56, 56]
Out: [128, 28, 28]

Conv B

Conv C
Conv C

Conv A

[64, 56, 56]

[128, 28, 28]

Conv BConv C

In: [64, 56, 56]
Out: [128, 28, 28]

Conv A

In: [128, 28, 28]
Out: [128, 28, 28]

Conv B

DeepCache

Shortcut in ResNet

Figure 11: Reducing computational graph search space.

the number of operators and operator types, considering the exis-
tence of non-sequential connections, there are 𝑁 × 2𝑁−1 possible
computational graphs for a model with 𝑁 operators. For example,
models like VGG16 and ResNet18 have more than 107 possible com-
putational graphs. While such a huge search space is intractable,
DeepCache can significantly reduce it.

Specifically, two operators can be connected only if one’s output
size equals another’s input size. Fig. 11 illustrates a typical shortcut
connection in ResNet. While recovering hyperparameters, Deep-
Cache simultaneously recovers each operator’s input and output
size, which helps filter out erroneous computational graphs, e.g.,
the outputs of Conv A and Conv B cannot be forwarded to Conv C.
As shown in Fig. 11, the search space for the shortcut structure is
reduced from 27 (there are seven dashed connections) to 1. Con-
sequently, in our evaluation, the reduced search space for VGG16
and ResNet18 is 16 and 80, respectively.

…

In: [64, 56, 56]
Out: [64, 56, 56]

In: [64, 56, 56]
Out: [128, 28, 28]

In: [128, 28, 28]
Out: [128, 28, 28]

Unknown
Conv

…

Top-k candidates

Match with previous

In: [64, 56, 56]
Out: [64, 56, 56]

Conv after fixing

Check if it leads to
reasonable graphsMatch with subsequent

Figure 12: Error fixing illustration.

Prediction Error Fixing. Our investigation shows that operators
with wrong labels often exhibit low similarity with the candidate.
Therefore, it can be assumed that those fewwrong labels can be iden-
tified by experienced DNN developers semi-automatically. Fig. 12
illustrates the error-fixing process with manual intervention. Specif-
ically, to fix one operator that is identified as potentially wrong
due to low similarity, we identify among the top-𝐾 candidates
that can match the previous and the subsequent operators, i.e., we
choose candidates whose input (output) size matches the majority
of the previous (subsequent) three operators’ output (input). The
candidates will later be manually verified to check if they lead to
reasonable computational graphs. Our manual investigation shows
that 8 out of 11 inference errors in Table 4 can be fixed.

6.3 DeepCache with LLC Attack

As mentioned at the end of Sec. 1, DeepCache is designed as a
general framework to digest traces logged by different cache side
channels. Compared with the L1 cache attack, the LLC attack poses

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhibo Liu et al.

a more severe and practical security challenge by relaxing the re-
quirement of the shared physical resources. To demonstrate the
generality and realism of DeepCache, Table 5 presents the eval-
uation results of DeepCache with traces logged by the typical
LLC Prime+Probe attack. This section serves as a proof-of-concept
demonstration of DeepCache’s potential in real world scenarios.

Given the LLC traces, DeepCache performs better than L1 traces
when inferring model architectures of TVM-emitted executables;
it can successfully identify almost all operators compiled by TVM.
Nevertheless, we observed that DeepCache equipped with LLC
attack shows superior performance and correctly infers all opera-
tors compiled by Glow. Although the LLC attack is usually deemed
more difficult than the L1 cache attack and its results are more
challenging to analyze due to noise and lower resolution, we in-
terpret the results as that LLC has a larger number of cache sets
and, consequently, can embed more information of executed low-
level code in the cache side-channel observations. DeepCache, as
exhibited, effectively extracts such information from cache side
channel observations and outputs distinguishable features. Besides,
DL compiler optimizations also significantly affect side channel
observations. Sec. 6.4 provides a detailed case study to illustrate the
difficulty of inferring operators when less information is embedded
in L1 cache traces due to non-optimal optimizations.

Overall, the results demonstrate DeepCache’s ability to extract
distinguishable features regardless of the specific underlying cache
side channel attacks used, and also validate the reliability and gener-
ality of our observations in Sec. 4. In sum, we interpret the results
as promising. Given that recently advanced cache side channel
attacks [33, 56, 86] (see more discussion in Sec. 8) could provide
a remarkably high time resolution of less than 70 CPU cycles (in
contrast, the standard Prime+Probe attack leveraged in this paper
requires thousands of CPU cycles), we envision that DeepCache
could be benefited from advanced high-resolution cache attack
methods working in a pluggable manner.

Table 5: The performance of DeepCache with LLC attack.

TVM Glow
ResNet VGG ResNet VGG

Operator Types 95.2% 100% 100% 100%
Hyperparameters 92.6% 100% 100% 100%
Mem Layouts 91.9% 100% 100% 100%

6.4 Case Study

Comparing Table 4 with Table 5, DeepCache shows an unusually
low accuracy with L1 traces. To explore the root causes and have
a clear understanding of DeepCache’s capability, we present a
detailed case study in this section. Meanwhile, due to the difficulty
in recognizing real cache access traces, we leverage noise-free traces
described in Sec. 4.3 to speed up the manual investigation.
Featureless Traces.We first closely examine one operator’s logged
cache access trace that DeepCache fails to recognize. As shown in
Fig. 13(a), even with noise-free traces, little meaningful information
has leaked out, i.e., the trace is visually featureless, and almost all
cache sets are visited (marked as dark pixels). Although the pattern
boundaries are still noticeable (marked with red dash boxes), the
featureless patterns prevent the feature extraction component of
DeepCache from learning meaningful information.

After investigation, we find that 9 out of 12 errors in Table 4 are
due to such cause. DeepCache is especially less functional when
several Glow-compiled operators show similar, featureless cache
access traces. However, when DNNs are compiled with TVM, such
featureless traces are less frequent; most traces show repeated and
visible patterns that DeepCache can distinguish. Below, we unveil
that this distinction stems from Glow’s less intensive optimizations.

for ic in range(512):
addr1 = (W + w_idx + ic*8)
addr2 = (W + w_idx + ic*8 + 20h)
read a ymmword from addr1
read a ymmword from addr2
addr1 = (W + w_idx + ic*8 + 24000h)
addr2 = (W + w_idx + ic*8 + 24020h)
read a ymmword from addr1
read a ymmword from addr2
floating-point multiplications
...

1
2
3
4
5
6
7
8
9

10
11

(b) Example of non-optimal code.(a) Example of featureless trace.

Figure 13: Case study.

Non-optimal Code. To explain the root reasons for the above
“featureless” traces, we reverse-engineered the corresponding ex-
ecutables and manually analyzed the binary code. Our analysis
shows that Glow’s optimization strategies sometimes appear in-
flexible and less effective than TVM’s. Fig. 13(b) shows a simplified
code example generated by Glow. This code snippet is the inner
loop part of a Conv operator, which conducts massive floating-
point multiplications. As discussed in Sec. 4, DL compilers split and
permutate loops for better memory locality. However, Glow failed
to produce optimal, cache-friendly binary code. The loop iterates
512 times, and each time, four ymmword (32 bytes) will be read.

Note that lines 4–5 (and lines 8–9) read consecutive 64 bytes,
precisely the size of a cache line. Thus, two cache lines will be
updated each iteration. Since the DNN executable runs on a CPU
with a 32 KB L1 data cache (per core), there are 512 cache lines,
meaning the whole L1 data cache will be exhausted after 256 itera-
tions. Therefore, such a self-competing memory access pattern can
fill the L1 data cache twice, resulting in lots of cache misses.
Side Effects of Ineffective Optimizations. Ideally, the memory
accessed during computation-intensive program execution should
be restricted to a small region such that the cache hit rate could
increase and the probability of competing with other programs for
cache resources will be reduced. In this case, the computation does
not reach its optimal performance due to less effective optimiza-
tions. However, from an attacker’s perspective, such less effective
optimizations instead compensate for cache side channel vulnerabil-
ity that can leak DNN architectures. Specifically, the Prime+Probe
attack is known to be slow; each probe iterationmay take thousands
of CPU cycles. The code snippet discussed above will update the
whole cache in this period. The passive attacker can learn nothing
else except all cache sets are visited.

Nevertheless, this seemingly secure feature is ineffective against
attackers using LLC side channel attacks. Given the LLC’s larger
size, the non-optimal code cannot fill the LLC. Also, memory ac-
cesses are uniformly distributed to different cache sets, resulting
in diffused but identifiable patterns. This explains the superior
results in Table 5 and helps emphasize this work’s practical sig-
nificance and contribution. Beyond that, while the non-optimal

DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

code temporarily reduces the L1 cache side channel attack surfaces
of Glow-emitted DNN executables, one may expect that the Glow
community will gradually improve the optimization passes of its
compiler, consequently “reviving” the attack in the future.

7 MITIGATION

By remotely recovering DNN architectures, DeepCache poses a
significant risk to the security of DL services. Since DeepCache
exploits well-studied cache side channel attacks, existing cache
side channel mitigations can also defend against DeepCache. Prior
works proposed system-level defenses, including partitioning cache
resources [34, 51, 91], introducing noise in cache access timings [87],
and hypervisor-level process scheduling [42, 68, 72, 90]. Such miti-
gations require system or even hardware-level modifications and
cannot be easily applied from the customer side. On the other hand,
software-level mitigations are transparent to users and require no
system modifications that may impact other processes. We discuss
potential solutions in more detail in the Appendix A.2.

8 RELATEDWORK

Sec. 3.1 has reviewed relevant works launching side channels or
other microarchitecture exploitations toward DNNs. This section
reviews recent advances in cache side channel attacks. Recently,
many advanced cache side channel attacks have been proposed.
Reload+Refresh [13] detects accesses to a shared address by moni-
toring changes in the eviction candidate without forcing evictions
on the victim’s data. Prime+Scope [56] can infer fine-grained mem-
ory access patterns with a near-optimal time resolution of around
70 cycles. Prefetch+Reload [22] leverages the prefetch instruction
provided by modern Intel processors to achieve almost zero error
rates when monitoring access patterns. Prime+Store [33] uses tran-
sient execution to perform arbitrary manipulations of the cache
state, presenting a timing-based cache attack that can sample the
cache state at a rate higher than the clock rate. S2C [86] presents a
timer-less cross-core cache attack that exploits Load-Linked/Store-
Conditional (LL/SC) instructions provided by Apple M1 processors,
which enable direct observation of cache activities.

9 CONCLUSION

This paper reviews existing side channel attacks and illustrates the
difficulties of applying them to attack DNN executables. However,
we show that hardware-aware optimizations extensively employed
by DL compilers result in information leakage in cache access
patterns, and we design DeepCache which leverages contrastive
learning and anomaly detection to precisely infer DNNmodel infor-
mation from DNN executables. Thus, DeepCache poses a serious
security challenge for the wide adoption of DNN executables.

ACKNOWLEDGEMENT

The HKUST authors were supported in part by a NSFC/RGC JRS
grant under the contract N_HKUST605/23 and a RGC CRF grant
under the contract C6015-23G.

REFERENCES

[1] 2023. ONNX. https://onnx.ai/.
[2] 2024. Research Artifact of DeepCache. https://github.com/monkbai/DeepCache.

[3] Ahmed Abdulaal, Zhuanghua Liu, and Tomer Lancewicki. 2021. Practical ap-
proach to asynchronous multivariate time series anomaly detection and localiza-
tion. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery
& data mining. 2485–2494.

[4] Amazon. 2023. Amazon SageMaker Neo. https://aws.amazon.com/sagemaker/
neo/.

[5] Amazon. 2023. CPU Inference with Amazon EKS. https://docs.aws.amazon.com/
deep-learning-containers/latest/devguide/deep-learning-containers-eks.html.

[6] Apache. 2023. TVM. https://tvm.apache.org/.
[7] Andrea Arcangeli, Izik Eidus, and Chris Wright. 2009. Increasing memory density

by using KSM. In Proceedings of the linux symposium. Citeseer, 19–28.
[8] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V Krishnamurthy, Thomas

La Porta, Patrick McDaniel, and Lisa Marvel. 2017. Malicious co-residency on the
cloud: Attacks and defense. In IEEE INFOCOM 2017-IEEE Conference on Computer
Communications. IEEE, 1–9.

[9] Ahmed Osama Fathy Atya, Zhiyun Qian, Srikanth V Krishnamurthy, Thomas
La Porta, Patrick McDaniel, and Lisa M Marvel. 2019. Catch me if you can: A
closer look at malicious co-residency on the cloud. IEEE/ACM Transactions on
Networking 27, 2 (2019), 560–576.

[10] Julien Audibert, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A
Zuluaga. 2020. Usad: Unsupervised anomaly detection on multivariate time series.
In Proceedings of the 26th ACM SIGKDD international conference on knowledge
discovery & data mining. 3395–3404.

[11] Lejla Batina, Shivam Bhasin, Dirmanto Jap, and Stjepan Picek. 2019. CSI NN:
reverse engineering of neural network architectures through electromagnetic
side channel. In Proceedings of the 28th USENIX Conference on Security Symposium.
515–532.

[12] Erick Bauman, Zhiqiang Lin, and Kevin W Hamlen. 2018. Superset Disassembly:
Statically Rewriting x86 Binaries Without Heuristics.. In NDSS.

[13] Samira Briongos, Pedro Malagón, José M Moya, and Thomas Eisenbarth. 2020.
{RELOAD+ REFRESH}: Abusing Cache Replacement Policies to Perform Stealthy
Cache Attacks. In 29th USENIX Security Symposium (USENIX Security 20). 1967–
1984.

[14] Tianqi Chen, Thierry Moreau, Ziheng Jiang, Lianmin Zheng, Eddie Yan, Haichen
Shen, Meghan Cowan, Leyuan Wang, Yuwei Hu, Luis Ceze, et al. 2018. {TVM}:
An automated {End-to-End} optimizing compiler for deep learning. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
578–594.

[15] Google Cloud. 2023. Deep Learning VM Images. https://cloud.google.com/deep-
learning-vm/docs/images.

[16] Sushant Dinesh, Nathan Burow, Dongyan Xu, and Mathias Payer. 2020.
Retrowrite: Statically instrumenting cots binaries for fuzzing and sanitization. In
2020 IEEE Symposium on Security and Privacy (SP). IEEE, 1497–1511.

[17] Craig Disselkoen, David Kohlbrenner, Leo Porter, and Dean Tullsen. 2017.
{Prime+ Abort}: A {Timer-Free}{High-Precision} L3 Cache Attack using Intel
{TSX}. In 26th USENIX Security Symposium (USENIX Security 17). 51–67.

[18] Anuj Dubey, Rosario Cammarota, and Aydin Aysu. 2020. Maskednet: The first
hardware inference engine aiming power side-channel protection. In 2020 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
197–208.

[19] Paul Devadoss Ezhilchelvan and Isi Mitrani. 2015. Evaluating the probability of
malicious co-residency in public clouds. IEEE Transactions on Cloud Computing
5, 3 (2015), 420–427.

[20] Yansong Gao, Huming Qiu, Zhi Zhang, Binghui Wang, Hua Ma, Alsharif
Abuadbba, Minhui Xue, Anmin Fu, and Surya Nepal. 2024. DeepTheft: Stealing
DNN Model Architectures through Power Side Channel. In 2024 IEEE Symposium
on Security and Privacy (SP). IEEE.

[21] Google. 2022. PyTorch on Google Cloud. https://opensource.googleblog.com/
2022/09/accelerate-your-models-to-production-with-google-cloud-and-
pytorch_0905763892.html.

[22] Yanan Guo, Andrew Zigerelli, Youtao Zhang, and Jun Yang. 2022. Adversarial
prefetch: New cross-core cache side channel attacks. In 2022 IEEE Symposium on
Security and Privacy (SP). IEEE, 1458–1473.

[23] Diwaker Gupta, Sangmin Lee, Michael Vrable, Stefan Savage, Alex C Snoeren,
George Varghese, Geoffrey M Voelker, and Amin Vahdat. 2010. Difference engine:
Harnessing memory redundancy in virtual machines. Commun. ACM 53, 10
(2010), 85–93.

[24] Kim Hazelwood, Sarah Bird, David Brooks, Soumith Chintala, Utku Diril, Dmytro
Dzhulgakov, Mohamed Fawzy, Bill Jia, Yangqing Jia, Aditya Kalro, et al. 2018.
Applied machine learning at facebook: A datacenter infrastructure perspective.
In 2018 IEEE International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 620–629.

[25] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual
learning for image recognition. In CVPR. 770–778.

[26] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. 2015. Distilling the knowledge in
a neural network. arXiv preprint arXiv:1503.02531 (2015).

[27] Sanghyun Hong, Michael Davinroy, Yiğitcan Kaya, Dana Dachman-Soled, and
Tudor Dumitraş. 2020. How to 0wn nas in your spare time. (2020).

https://onnx.ai/
https://github.com/monkbai/DeepCache
https://aws.amazon.com/sagemaker/neo/
https://aws.amazon.com/sagemaker/neo/
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks.html
https://docs.aws.amazon.com/deep-learning-containers/latest/devguide/deep-learning-containers-eks.html
https://tvm.apache.org/
https://cloud.google.com/deep-learning-vm/docs/images
https://cloud.google.com/deep-learning-vm/docs/images
https://opensource.googleblog.com/2022/09/accelerate-your-models-to-production-with-google-cloud-and-pytorch_0905763892.html
https://opensource.googleblog.com/2022/09/accelerate-your-models-to-production-with-google-cloud-and-pytorch_0905763892.html
https://opensource.googleblog.com/2022/09/accelerate-your-models-to-production-with-google-cloud-and-pytorch_0905763892.html

CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA Zhibo Liu et al.

[28] Sanghyun Hong, Michael Davinroy, Yiǧitcan Kaya, Stuart Nevans Locke, Ian
Rackow, Kevin Kulda, Dana Dachman-Soled, and Tudor Dumitraş. 2018. Security
analysis of deep neural networks operating in the presence of cache side-channel
attacks. arXiv preprint arXiv:1810.03487 (2018).

[29] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun
Wang, Tobias Weyand, Marco Andreetto, and Hartwig Adam. 2017. Mobilenets:
Efficient convolutional neural networks for mobile vision applications. arXiv
preprint arXiv:1704.04861 (2017).

[30] Xing Hu, Ling Liang, Shuangchen Li, Lei Deng, Pengfei Zuo, Yu Ji, Xinfeng Xie,
Yufei Ding, Chang Liu, Timothy Sherwood, et al. 2020. Deepsniffer: A dnn model
extraction framework based on learning architectural hints. In ASPLOS. 385–399.

[31] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. 2016. SqueezeNet: AlexNet-level accuracy with 50x
fewer parameters and< 0.5 MBmodel size. arXiv preprint arXiv:1602.07360 (2016).

[32] Animesh Jain, Shoubhik Bhattacharya, Masahiro Masuda, Vin Sharma, and Yida
Wang. 2020. Efficient execution of quantized deep learning models: A compiler
approach. arXiv preprint arXiv:2006.10226 (2020).

[33] Daniel Katzman, William Kosasih, Chitchanok Chuengsatiansup, Eyal Ronen,
and Yuval Yarom. 2023. The gates of time: Improving cache attacks with transient
execution. In 32nd USENIX Security Symposium (USENIX Security 23). 1955–1972.

[34] Taesoo Kim, Marcus Peinado, and Gloria Mainar-Ruiz. 2012.
{STEALTHMEM}:{System-Level} Protection Against {Cache-Based}
Side Channel Attacks in the Cloud. In 21st USENIX Security Symposium (USENIX
Security 12). 189–204.

[35] Yoongu Kim, Ross Daly, Jeremie Kim, Chris Fallin, Ji Hye Lee, Donghyuk Lee,
Chris Wilkerson, Konrad Lai, and Onur Mutlu. 2014. Flipping bits in memory
without accessing them: An experimental study of DRAM disturbance errors.
ACM SIGARCH Computer Architecture News 42, 3 (2014), 361–372.

[36] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. 2012. Imagenet classifi-
cation with deep convolutional neural networks. Advances in neural information
processing systems 25 (2012).

[37] Andrew Kwong, Daniel Genkin, Daniel Gruss, and Yuval Yarom. 2020. Rambleed:
Reading bits in memory without accessing them. In 2020 IEEE Symposium on
Security and Privacy (SP). IEEE, 695–711.

[38] Zhihan Li, Youjian Zhao, Jiaqi Han, Ya Su, Rui Jiao, Xidao Wen, and Dan Pei. 2021.
Multivariate time series anomaly detection and interpretation using hierarchical
inter-metric and temporal embedding. In Proceedings of the 27th ACM SIGKDD
conference on knowledge discovery & data mining. 3220–3230.

[39] Zhihui Lin, Maomao Li, Zhuobin Zheng, Yangyang Cheng, and Chun Yuan. 2020.
Self-attention convlstm for spatiotemporal prediction. In Proceedings of the AAAI
conference on artificial intelligence, Vol. 34. 11531–11538.

[40] Fangfei Liu, Yuval Yarom, Qian Ge, Gernot Heiser, and Ruby B Lee. 2015. Last-
level cache side-channel attacks are practical. In 2015 IEEE symposium on security
and privacy. IEEE, 605–622.

[41] Jiawei Liu, Jinkun Lin, Fabian Ruffy, Cheng Tan, Jinyang Li, Aurojit Panda, and
Lingming Zhang. 2023. Nnsmith: Generating diverse and valid test cases for deep
learning compilers. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume
2. 530–543.

[42] Li Liu, An Wang, WanYu Zang, Meng Yu, Menbai Xiao, and Songqing Chen. 2018.
Shuffler: Mitigate cross-vm side-channel attacks via hypervisor scheduling. In
Security and Privacy in Communication Networks: 14th International Conference,
SecureComm 2018, Singapore, Singapore, August 8-10, 2018, Proceedings, Part I.
Springer, 491–511.

[43] Yuntao Liu and Ankur Srivastava. 2020. Ganred: Gan-based reverse engineering
of dnns via cache side-channel. In Proceedings of the 2020 ACM SIGSAC Conference
on Cloud Computing Security Workshop. 41–52.

[44] Yizhi Liu, Yao Wang, Ruofei Yu, Mu Li, Vin Sharma, and Yida Wang. 2019. Opti-
mizing {CNN} model inference on {CPUs}. In 2019 USENIX Annual Technical
Conference (USENIX ATC 19). 1025–1040.

[45] Zhibo Liu, Yuanyuan Yuan, Shuai Wang, Xiaofei Xie, and Lei Ma. 2023. Decom-
piling x86 deep neural network executables. (2023).

[46] Jonathan Long, Evan Shelhamer, and Trevor Darrell. 2015. Fully convolutional
networks for semantic segmentation. In Proceedings of the IEEE conference on
computer vision and pattern recognition. 3431–3440.

[47] Yunhui Long, Vincent Bindschaedler, Lei Wang, Diyue Bu, XiaofengWang, Haixu
Tang, Carl A Gunter, and Kai Chen. 2018. Understanding membership inferences
on well-generalized learning models. arXiv preprint arXiv:1802.04889 (2018).

[48] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. Acm
sigplan notices 40, 6 (2005), 190–200.

[49] Lingxiao Ma, Zhiqiang Xie, Zhi Yang, Jilong Xue, Youshan Miao, Wei Cui, Wenx-
iang Hu, Fan Yang, Lintao Zhang, and Lidong Zhou. 2020. Rammer: Enabling
holistic deep learning compiler optimizations with {rTasks}. In 14th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 20). 881–897.

[50] PratyushMishra, Rishabh Poddar, Jerry Chen, Alessandro Chiesa, and Raluca Ada
Popa. 2018. Oblix: An efficient oblivious search index. In 2018 IEEE Symposium

on Security and Privacy (SP). IEEE, 279–296.
[51] Soo-Jin Moon, Vyas Sekar, and Michael K Reiter. 2015. Nomad: Mitigating

arbitrary cloud side channels via provider-assisted migration. In Proceedings of
the 22nd acm sigsac conference on computer and communications security. 1595–
1606.

[52] OctoML. 2023. OctoML Raises $85M Series C to Accelerate ML Deployment for
Enterprises Everywhere. https://octoml.ai/blog/octoml-raises-usd85m-series-c/.

[53] Olga Ohrimenko, Felix Schuster, Cédric Fournet, Aastha Mehta, Sebastian
Nowozin, Kapil Vaswani, and Manuel Costa. 2016. Oblivious {Multi-Party}
machine learning on trusted processors. In 25th USENIX Security Symposium
(USENIX Security 16). 619–636.

[54] ONNX. 2023. ONNX Zoo. https://github.com/onnx/models.
[55] Dag Arne Osvik, Adi Shamir, and Eran Tromer. 2006. Cache attacks and counter-

measures: the case of AES. In Topics in Cryptology–CT-RSA 2006: The Cryptogra-
phers’ Track at the RSA Conference 2006, San Jose, CA, USA, February 13-17, 2005.
Proceedings. Springer, 1–20.

[56] Antoon Purnal, Furkan Turan, and Ingrid Verbauwhede. 2021. Prime+ scope:
Overcoming the observer effect for high-precision cache contention attacks. In
Proceedings of the 2021 ACM SIGSAC Conference on Computer and Communications
Security. 2906–2920.

[57] PyTorch. 2023. PyTorch 2.x: faster, more pythonic and as dynamic as ever.
https://pytorch.org/get-started/pytorch-2.0/.

[58] Adnan Siraj Rakin, Md Hafizul Islam Chowdhuryy, Fan Yao, and Deliang Fan.
2022. Deepsteal: Advanced model extractions leveraging efficient weight stealing
in memories. In 2022 IEEE Symposium on Security and Privacy (SP). IEEE, 1157–
1174.

[59] Thomas Ristenpart, Eran Tromer, Hovav Shacham, and Stefan Savage. 2009.
Hey, you, get off of my cloud: exploring information leakage in third-party
compute clouds. In Proceedings of the 16th ACM conference on Computer and
communications security. 199–212.

[60] Nadav Rotem, Jordan Fix, Saleem Abdulrasool, Garret Catron, Summer Deng,
Roman Dzhabarov, Nick Gibson, James Hegeman, Meghan Lele, Roman Leven-
stein, et al. 2018. Glow: Graph lowering compiler techniques for neural networks.
arXiv preprint arXiv:1805.00907 (2018).

[61] Lifeng Shen, Zhongzhong Yu, Qianli Ma, and James T Kwok. 2021. Time series
anomaly detection with multiresolution ensemble decoding. In Proceedings of the
AAAI Conference on Artificial Intelligence, Vol. 35. 9567–9575.

[62] Elaine Shi. 2020. Path oblivious heap: Optimal and practical oblivious priority
queue. In 2020 IEEE Symposium on Security and Privacy (SP). IEEE, 842–858.

[63] Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and
Wang-chun Woo. 2015. Convolutional LSTM network: A machine learning
approach for precipitation nowcasting. Advances in neural information processing
systems 28 (2015).

[64] Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. 2017. Mem-
bership inference attacks against machine learning models. In 2017 IEEE sympo-
sium on security and privacy (SP). IEEE, 3–18.

[65] Karen Simonyan and Andrew Zisserman. 2014. Very deep convolutional networks
for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014).

[66] M Smith. 2023. The case for running AI on CPUs isn’t dead yet. IEEE Spectrum 1
(2023).

[67] Hongmei Song, Wenguan Wang, Sanyuan Zhao, Jianbing Shen, and Kin-Man
Lam. 2018. Pyramid dilated deeper convlstm for video salient object detection.
In Proceedings of the European conference on computer vision (ECCV). 715–731.

[68] Deian Stefan, Pablo Buiras, Edward Z Yang, Amit Levy, David Terei, Alejandro
Russo, and David Mazières. 2013. Eliminating cache-based timing attacks with
instruction-based scheduling. In Computer Security–ESORICS 2013: 18th European
Symposium on Research in Computer Security, Egham, UK, September 9-13, 2013.
Proceedings 18. Springer, 718–735.

[69] Emil Stefanov, Marten van Dijk, Elaine Shi, T-H Hubert Chan, Christopher
Fletcher, Ling Ren, Xiangyao Yu, and Srinivas Devadas. 2018. Path ORAM:
an extremely simple oblivious RAM protocol. Journal of the ACM (JACM) 65, 4
(2018), 1–26.

[70] Florian Tramèr, Fan Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart.
2016. Stealing machine learning models via prediction {APIs}. In 25th USENIX
security symposium (USENIX Security 16). 601–618.

[71] Apache TVM. 2023. Design and Architecture. https://tvm.apache.org/docs/arch/
index.html.

[72] Venkatanathan Varadarajan, Thomas Ristenpart, and Michael Swift. 2014.
Scheduler-based defenses against {Cross-VM} side-channels. In 23rd USENIX
security symposium (USENIX security 14). 687–702.

[73] Venkatanathan Varadarajan, Yinqian Zhang, Thomas Ristenpart, and Michael
Swift. 2015. A Placement Vulnerability Study in {Multi-Tenant} Public Clouds.
In 24th USENIX Security Symposium (USENIX Security 15). 913–928.

[74] Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi, Aravind Machiry, John
Grosen, Paul Grosen, Christopher Kruegel, and Giovanni Vigna. 2017. Ram-
blr: Making Reassembly Great Again.. In NDSS.

[75] Shuai Wang, Pei Wang, and Dinghao Wu. 2015. Reassembleable disassembling.
In 24th USENIX Security Symposium (USENIX Security 15). 627–642.

https://octoml.ai/blog/octoml-raises-usd85m-series-c/
https://github.com/onnx/models
https://pytorch.org/get-started/pytorch-2.0/
https://tvm.apache.org/docs/arch/index.html
https://tvm.apache.org/docs/arch/index.html

DeepCache: Revisiting Cache Side-Channel Attacks in Deep Neural Networks Executables CCS ’24, October 14–18, 2024, Salt Lake City, UT, USA

[76] David Williams-King, Hidenori Kobayashi, Kent Williams-King, Graham Pat-
terson, Frank Spano, Yu Jian Wu, Junfeng Yang, and Vasileios P Kemerlis. 2020.
Egalito: Layout-agnostic binary recompilation. In Proceedings of the Twenty-Fifth
International Conference on Architectural Support for Programming Languages and
Operating Systems. 133–147.

[77] RuoyuWu, Taegyu Kim, Dave Jing Tian, Antonio Bianchi, and Dongyan Xu. 2022.
{DnD}: A {Cross-Architecture} deep neural network decompiler. In USENIX
Security 22. 2135–2152.

[78] Zhang Xu, Haining Wang, and Zhenyu Wu. 2015. A measurement study on co-
residence threat inside the cloud. In 24th USENIX Security Symposium (USENIX
Security 15). 929–944.

[79] Mengjia Yan, ChristopherW Fletcher, and Josep Torrellas. [n. d.]. Cache telepathy:
Leveraging shared resource attacks to learn DNN architectures. In USENIX Sec’20.

[80] Dingqing Yang, Prashant J Nair, and Mieszko Lis. 2023. HuffDuff: Stealing Pruned
DNNs from Sparse Accelerators. In Proceedings of the 28th ACM International
Conference on Architectural Support for Programming Languages and Operating
Systems, Volume 2. 385–399.

[81] Jimei Yang, Brian Price, Scott Cohen, Honglak Lee, and Ming-Hsuan Yang. 2016.
Object contour detection with a fully convolutional encoder-decoder network.
In Proceedings of the IEEE conference on computer vision and pattern recognition.
193–202.

[82] Yuval Yarom. 2016. Mastik: A micro-architectural side-channel toolkit.
[83] Yuval Yarom and Katrina Falkner. 2014. {FLUSH+ RELOAD}: A high resolution,

low noise, l3 cache {Side-Channel} attack. In USENIX security 14. 719–732.
[84] Hongxu Yin, Pavlo Molchanov, Jose M Alvarez, Zhizhong Li, Arun Mallya, Derek

Hoiem, Niraj K Jha, and Jan Kautz. 2020. Dreaming to distill: Data-free knowledge
transfer via deepinversion. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. 8715–8724.

[85] Honggang Yu, Haocheng Ma, Kaichen Yang, Yiqiang Zhao, and Yier Jin. 2020.
Deepem: Deep neural networks model recovery through em side-channel in-
formation leakage. In 2020 IEEE International Symposium on Hardware Oriented
Security and Trust (HOST). IEEE, 209–218.

[86] Jiyong Yu, Aishani Dutta, Trent Jaeger, David Kohlbrenner, and Christopher W
Fletcher. 2023. Synchronization Storage Channels ({{{{{S2C)}}}}}: Timer-less
Cache {Side-Channel} Attacks on the Apple M1 via Hardware Synchronization
Instructions. In 32nd USENIX Security Symposium (USENIX Security 23). 1973–
1990.

[87] Rui Zhang, Xiaojun Su, JianpingWang, CongWang,Wenyin Liu, and RynsonWH
Lau. 2014. On mitigating the risk of cross-VM covert channels in a public cloud.
IEEE Transactions on Parallel and Distributed Systems 26, 8 (2014), 2327–2339.

[88] Xiang Zhang, Zhigang Huo, Jie Ma, and Dan Meng. 2010. Exploiting data dedu-
plication to accelerate live virtual machine migration. In 2010 IEEE international
conference on cluster computing. IEEE, 88–96.

[89] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. 2014. Cross-
tenant side-channel attacks in PaaS clouds. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security. 990–1003.

[90] Yinqian Zhang and Michael K Reiter. 2013. Düppel: Retrofitting commodity
operating systems to mitigate cache side channels in the cloud. In Proceedings
of the 2013 ACM SIGSAC conference on Computer & communications security.
827–838.

[91] Ziqiao Zhou, Michael K Reiter, and Yinqian Zhang. 2016. A software approach
to defeating side channels in last-level caches. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security. 871–882.

[92] Yuankun Zhu, Yueqiang Cheng, Husheng Zhou, and Yantao Lu. 2021. Hermes
Attack: Steal {DNN} Models with Lossless Inference Accuracy. In USENIX Secu-
rity.

A APPENDIX

A.1 Operator Examples

Table 6 shows examples of DNN operators evaluated in this work,
including their types, hyperparameters, and optimized layouts.

A.2 Software-level Mitigation

Below, we tentatively discuss using oblivious random access mem-
ory (ORAM) techniques to randomize memory accesses against
side channel attacks [50, 53, 62, 69]. Moreover, we discuss poten-
tial domain-specific obfuscation techniques to randomize memory
access patterns during DNN computation. The latter approach is
more challenging (as it requires reverse engineering and binary
code analysis) but has broader applicability. To mimic how third-
party security vendors may protect (legacy) DNN executables in

Table 6: Examples of operator types, hyperparameters, and

optimized layouts.

Type Hyperparameters Optimized Layouts

Conv

kernel size: 3

[16, 1, 3, 3, 512, 32]#input channel: 512
#output channel: 512

stride: 1

Conv+ReLU

kernel size: 1

[16, 2, 1, 1, 64, 16]#input channel: 128
#output channel: 256

stride: 2

FC #input neurons: 512 [125, 512, 8]#output neurons: 1000

FC+ReLU #input neurons: 25088 [512, 25088, 8]#output neurons: 4096

Max Pool
kernel size: 3

NApadding size: 1
stride: 2

Average Pool
kernel size: 1

NApadding size: 0
stride: 2

the wild, below, we assume the protection will be directly applied
to DNN executables.
Oblivious RAM. We view typical ORAM protocols, like PathO-
RAM [69], as an out-of-box solution to shield DNN executables’
memory access patterns. In general, each time the cache is accessed,
PathORAM will randomly access several cache sets to deceive ob-
servers. To use PathORAM to protect DNN executables, we view
each cache set as a “block” in the PathORAM protocol. PathORAM
maintains a binary tree where each node denotes several blocks.
Instead of directly accessing one block, it will randomly choose
one path that contains the target block and access all blocks along
the path from the root to the leaf. Thus, a single cache access is
expended into several random accesses. However, it incurs a huge
overhead. We leverage Intel Pin to simulate the PathORAM proto-
col. After rerunning our experiment with ORAM-protected cache
access traces, we found that PathORAM can effectively protect
DNN executables against cache side channel attacks. However, it
incurs an overhead of at least six times more cache accesses.
Cache State Obfuscation. As a tradeoff between performance
and security, we reconsider cache flushing defenses for DNN exe-
cutable obfuscation. Each computation-intensive code block can be
obfuscated to visit all cache sets, making its traces close to those
exhibited in Fig. 13. To instrument and obfuscate DNN executa-
bles, for each computation-intensive block, extra obfuscation code
could be inserted to randomly update cache sets not accessed by
the original code during runtime. While the source code is unavail-
able, modern binary rewriting techniques [12, 16, 74–76] could be
leveraged to modify the DNN executable, i.e., inserting obfuscation
code. The obfuscation code in a block will randomly update cache
sets that are not accessed by the original code. Therefore, similar
to the case discussed in Sec. 6.4, after obfuscation, the attacker can
only observe that all cache sets are accessed each time he tries to
probe the cache state. Thus, the attack falls back to a random guess.
Also, since we only update cache sets that are not accessed, extra
cache accesses incurred by obfuscation code are limited in practice.

	Abstract
	1 Introduction
	2 Background
	2.1 Deep Neural Network
	2.2 DL Compiler and DNN Executable
	2.3 Cache Side Channels
	2.4 L1 Cache Attack vs. LLC Attack

	3 Motivation
	3.1 DNN Stealing
	3.2 Threat Model
	3.3 Difficulty of Attacking DNN Executables

	4 Demystifying Side Channel Leakage
	4.1 Optimizations for Matrix Computations
	4.2 Leakage in Optimizations
	4.3 Observable Cache Access Patterns
	4.4 Generalization

	5 Design of DeepCache
	5.1 Feature Extraction
	5.2 Trace Segmentation

	6 Evaluation
	6.1 Setup
	6.2 DeepCache with L1 Cache Attack
	6.3 DeepCache with LLC Attack
	6.4 Case Study

	7 Mitigation
	8 Related Work
	9 Conclusion
	References
	A Appendix
	A.1 Operator Examples
	A.2 Software-level Mitigation

