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Abstract—Binary lifters convert executables into an intermedi-
ate representation (IR) of a compiler framework. The recovered
IR code is generally deemed “analysis friendly,” bridging low-
level code analysis with well-established compiler infrastructures.
With years of development, binary lifters are becoming increas-
ingly popular for use in various security, systems, and software
(re)-engineering applications. Recent studies have also reported
highly promising results that suggest binary lifters can generate
LLVM IR code with correct functionality, even for complex cases.

This paper conducts an in-depth study of binary lifters from an
orthogonal and highly demanding perspective. We demystify the
“expressiveness” of binary lifters, and reveal how well the lifted
LLVM IR code can support critical downstream applications in
security analysis scenarios. To do so, we generate two pieces
of LLVM IR code by compiling C/C++ programs or by lifting
the corresponding executables. We then feed these two pieces
of LLVM IR code to three keystone downstream applications
(pointer analysis, discriminability analysis, and decompilation)
and determine whether inconsistent analysis results are gen-
erated. We study four popular static and dynamic LLVM IR
lifters that were developed by the industry or academia from a
total of 252,063 executables generated by various compilers and
optimizations and on different architectures. Our findings show
that modern binary lifters afford IR code that is highly suitable
for discriminability analysis and decompilation, and suggest that
such binary lifters can be applied in common similarity- or
code comprehension-based security analysis (e.g., binary diffing).
However, the lifted IR code appears unsuited to rigorous static
analysis (e.g., pointer analysis). To obtain a more comprehensive
view of the utility of binary lifters, we also compare the
performance of lifter-enabled approaches with that of binary-
only tools in three security tasks, i.e., sanitization, binary diffing,
and C decompilation. We summarize our findings and make
suggestions for the correct use and further enhancement of binary
lifters. We also explored practical ways to enhance the accuracy
of pointer analysis using lifted IR code, by using and augmenting
Debin, a tool for predicting debug information.

I. INTRODUCTION

An intermediate representation (IR) denotes the language
used by a compiler to represent source code for the purpose
of analysis and optimization. A good-quality IR accurately and
concisely represents the semantics of source code in a manner
that is independent of high-level languages. IR designs may
also reflect underlying hardware details or be platform-neutral.

To the best of our knowledge, SecondWrite [19], [47], was
the first to advocate and provide methods for lifting executa-
bles into LLVM IR code. It enables the reuse of analysis
facilities provided by the LLVM framework, thereby linking
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low-level code analysis with mature compiler infrastructures.
New binary lifter papers are continually presented at top-tier
conferences (e.g., [18], [48], [58], [113]), and industry (e.g.,
Microsoft [80]) has also expended considerable resources to
develop binary lifters [87], [80], [68], [61].

Given the dominance of the LLVM community, most com-
mercial binary lifters aim to translate executables into LLVM
IR code. The lifting of assembly programs into LLVM IR
enables a full set of LLVM compiler passes to be used
to smoothly and rapidly build various security and systems
applications, such as applications for vulnerability detection,
malware analysis, off-the-shelf software security hardening,
cross-architecture code reuse, and profiling [19], [47], [40],
[113], [58]. Lifter developers have also demonstrated that
lifted IR code is highly accurate and can pass most function-
ality tests or rigorous formal verifications [38], [66].

However, we have observed (as elaborated in Sec. III)
that lifted IR code frequently exhibits visually different rep-
resentations, which may stealthily undermine its utility for
application to downstream tasks. Overall, there are several
reverse engineering-related difficulties that arise when lifting
machine code into a (platform-neutral) IR, whereas translating
a high-level language into IR is generally facile. We note that
the research community lacks a systematic understanding of
how well the lifted IR code supports downstream applications.
This has caused great confusion for normal users (e.g., [105],
[21], [106], [73]), who want to use lifted IR code for various
downstream applications, and is a research gap that is not fully
disclosed by lifter developers [79].

This research aims to systematically determine the true
capability of binary lifters, which to the best of our knowledge
have yet to be explicated in real-world usage scenarios. We
aim to answer the following key research question: “To
what extent can lifted IR code support representative security
downstream applications?” Although previous research [110]
has highlighted that binary lifters’ outputs may not be of
satisfactory quality, recently released lifters have incorporated
many advanced techniques to enhance the quality of the IR
code they recover [18], [48], [113]. At present, a popular and
attractive procedure involves analyzing low-level x86 binary
and firmware samples by first lifting them into LLVM IR
code [40], [37], [117], [39], [18]. Hence, there is a demand for
studies of LLVM IR lifters in realistic settings to more clearly



delineate the applicability of these lifters to common security
analysis and instrumentation tasks.

Our study targets four modern static and dynamic binary
lifters that output LLVM IR code. We set up three rep-
resentative tasks, namely pointer analysis, discriminability
analysis, and C decompilation, as these are the key tasks
of many downstream applications that use binary lifters. We
compare the analysis results obtained from the lifted IR
and the compiled IR (denoted the “upper bound” quality)
over three datasets comprising a total of 252,063 executables
generated using various compilers and optimization settings
on 64-bit x86 and ARM64 platforms. We perform extensive
manual inspections and repairs of unaligned analysis results
and summarize key findings and their implications. The results
of discriminability analysis and decompilation are generally
good (though as expected, heavy optimizations like -O3 can
impose extra challenge), and provide solid empirical sup-
port to use lifters in similarity-based analysis (e.g., patch-
searching of legacy code [120], [124], [121]). Furthermore,
we also compare the performance of binary-only security
tools with that of lifter-enabled tools in three security tasks,
sanitization [101], binary code diffing, and C decompilation,
and present inspiring findings. We also study approaches to
employing and augmenting Debin [59] to recover debug
information in executables, thereby enhancing the shallow
support of lifted IR code in pointer analysis. Our augmented
Debin substantially increases the accuracy of pointer analysis
supported by RetDec [68], a popular binary lifter. In sum,
we demonstrate how binary lifters can be optimally applied to
support security-related tasks via the following contributions:

• We advocate a new and important focus for the study of
binary lifters. Rather than using the current approaches
of testing or formally verifying the “functional correct-
ness” of binary lifters, we explore binary lifters from an
orthogonal and demanding perspective by clarifying their
support for downstream applications.

• We use three downstream applications that are the corner-
stone of many security analysis scenarios. To smoothly
benchmark modern static and dynamic lifters, we address
several engineering challenges and expend considerable
manual effort. Our study is conducted in cross-compiler,
cross-optimization, and cross-architecture settings. To ob-
tain a more comprehensive overview, we also directly
compare lifter-enabled solutions with binary-only solu-
tions over three popular security tasks.

• We summarize the findings and implications of our study.
We provide practical solutions to a common limitation of
modern binary lifters — the ability to support rigorous
static analysis — by using and augmenting recent re-
search [59]. Our findings provide guidelines for users on
how to analyze low-level binary code with LLVM infras-
tructures for security purposes, and also highlight further
improvements that should be made by lifter developers.

We have released artifacts to support further research and
enhancement of binary lifters [1].
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Fig. 1. The workflow of modern binary lifters. “Static” and “Dynamic” denote
static disassembling and dynamic binary translation, respectively.

II. PRELIMINARIES

Fig. 1 depicts the high-level workflow of binary lifters. To
give a general review of lifting techniques, we subsume both
static and dynamic lifting procedures from a very holistic
perspective. Also, although LLVM IR is used as an example,
the introduced process should be conceptually applicable to
lifters of other IRs. We now elaborate on each step.
Reverse Engineering. A modern static binary lifter forms
an “end-to-end” workflow. The input executable first goes
through the reverse engineering procedures and is converted
into machine code. To date, disassembling of (non-obfuscated)
executable can be performed smoothly and correctly [110],
[49]. Some binary lifters would even take the commercial tools
(e.g., IDA-Pro [60]) as their frontend.

Dynamic lifters typically run executable within a hardware
emulator (e.g., Qemu [25]). Executed instructions and the
execution context (e.g., values of registers) are collected for
lifting [48], [18]. To accelerate the discovery of new execution
paths, symbolic execution engines (e.g., S2E [35]) could be
used by modern dynamic lifters [18]. Static lifters may also
recover function boundary information before lifting machine
instructions. To identify and recover functions, binary lifters
typically outsource this task to the underlying reverse engi-
neering infrastructures, e.g., IDA-Pro [60] or Radare2 [3].
Line by Line IR Lifting. This step denotes the key procedure
to lift IR code, where each machine instruction is mapped into
a sequence of IR statements. The lifted IR statements would
faithfully emulate machine execution, including CPU register-
level computations, memory updates, and other side effects.
A sequence of IR statements, corresponding to one machine
instruction, will be usually wrapped into a utility function.
Hence, each machine instruction will be mapped to a function
call in the lifted IR code to its utility function.
Runtime Module. Executing machine instructions typically
updates the runtime environment, e.g., CPU registers, flags,
stack, and heap. Accordingly, lifted IR code typically defines
specific data structures to represent the runtime environment
and assist the computation. For instance, a popular lifter,
McSema [87], defines a runtime module of three elements
(mem, pc, state) in its generated LLVM IR code, where
mem represents memory and global data regions, pc denotes
the program counter, and state maintains registers and CPU
flags. Memory load and store are converted into querying and
updating mem in the lifted IR code, respectively.
Refinement: From Emulation-Style IR to High-Level
IR. While the emulation style lifting is straightforward, ex-



(b) LLVM IRgenerated by Clang (c) LLVM IR lifted by McSema (a) Original C code

define i32 main() {          
a = alloca [100 x i32]; //allocate local array
return foo(a, 60);

}
define i32 foo(i32* a, i32 b) {
cmp = icmp sgt i32 b, 0
br cmp, label for.body, label for.end

for.body:
idx = phi i64 [idx.next], [0]
addr = getelementptr(a, idx);
c += load addr;
cond = icmp eq i32 idx.next, b;
br cond, label for.end, label for.body

for.end: return c;
}

int main() {
int a[100];
int c = foo(a, 60);
return c;

}
int foo(int a[], int b) {
int k, c; 
for (k = 0; k < b; k++) c += a[k];
return c;

}

State = {enum Arch, i64 Regs[], i8 Flags, ...}
define Mem main(State* s, PC pc, Mem mem){
// prepare local variables for CPU registers
eax = s.Regs[0]; ebx = s.Regs[1]; ...
Mem mem1 = foo(s, pc + 12, mem);
eax = s.Regs[0]; // load return value
// update global state s
s.Regs[0] = eax; s.Regs[1] = ebx; ...
return mem1;

}
define Mem foo(State* s, PC pc, Mem mem){
// load array a with offset k; k is in eax
ebx = _read_mem(mem, esi + eax);
// store c (in ebx) on top of the stack
Mem mem1 = _write_mem(mem, esp, ebx);

(c) LLVM IR lifted by McSema (con’d)

eax = __read_memory(mem, esi + eax);
}
define i32 _read_mem(Mem mem, i32 offset) {...}
define Mem _write_mem(Mem mem, i32 offset) {...}

Fig. 2. A case study comparing LLVM IR lifted by McSema with LLVM IR compiled by clang. Both IR code has been extensively simplified for readability.
Compiling and executing the lifted IR gives correct outputs, meaning that the lifted IR can smoothly pass existing functionality check research [38], [66].

isting research has pointed out considerable drawbacks in
the lifted IR code. For example, while the source code (and
compiled LLVM IR code) mostly uses local variables for
computation, the lifted IR code likely accesses a global array
(e.g., mem in the McSema case) maintained by the runtime
module to mimic the usage of physical stack in machine code.
This inconsistency is often referred to as the “virtual stack vs.
physical stack” issue in literatures [19], [47].

To refine the lifted IR code and make it (visually) closer to
the compiled IR, modern lifters can implement analysis passes
or heuristics to recover local variables and variable types;
successfully recovered local variables deprecate the necessity
of maintaining a global array to mimic physical memory stack
accesses. Precisely recovered variable types also assist static
analysis (see Sec. VI-B). Nevertheless, we note that not every
lifter has fully implemented such refinement procedures, as
we will show in Sec. VI. See case studies in Sec. III.

Since each execution trace only partially covers the pro-
gram, dynamic lifters usually merge multiple IR traces to-
gether. To this end, extra branch conditions and control transfer
statements are added. PHI nodes [123] defined by LLVM IR,
which stitch data flow propagations from different execution
paths, are also inserted at control merge points.
Optimization. Lifters usually leverage optimization passes
provided by the LLVM toolchain to optimize the lifted code.
As aforementioned, each machine instruction is usually lifted
into a routine function call to a sequence of IR statements,
leading to very lengthy IR programs. Optimization enables
to inline each function call, where considerable statements
(e.g., updating a CPU flag) could be further optimized away
given that they are “dead.” We notice that some lifters (e.g.,
RetDec [68]) could even implement its own optimization
passes to make the lifted IR code more concise [8], [6], [7].

III. MOTIVATING EXAMPLE

Fig. 2(a) presents a simple C code that sums the first 60
elements of an array. We use clang, the C frontend of the
LLVM framework, to compile and emit LLVM IR code (see
Fig. 2(b)). We use a popular static lifter, McSema [87], to

lift the corresponding executable and present the lifted LLVM
IR in Fig. 2(c). As observed, compiled IR code preserves
most of the structure of the source code. In contrast, the
lifted IR code represents the computation in a dramatically
different way due to the following observations. 1) McSema
uses utility functions to emulate the computation of each
machine instruction. For example, memory loading is lifted
into a callsite to read mem in Fig. 2(c). 2) McSema uses
several globals to represent program runtime, i.e., State that
consists of general-purpose CPU registers and CPU flags. 3)
McSema also uses an array (i.e., Mem in Fig. 2(c)) to mimic
the access of the x86 memory stacks.

While local variables are frequently used in compiled IR
code, e.g., the variable c in Fig. 2(b), McSema uses local
variables to represent registers (e.g., at the beginning of main
in Fig. 2(c)), and updates the global state s before finishing
function execution. Correspondingly, an array access in the
original C code (e.g., a[k] in Fig. 2(a)) is converted into
querying the global array via some utility functions, which
mimics how the x86 stack is accessed in the machine code.

We emphasize that compiling and executing the lifted
IR code gives correct outputs. Hence, existing research on
either testing or formally verifying the correctness of binary
lifters [66], [38], [113] would not deem the lifted IR code
“specious.” Nevertheless, given the dramatically different rep-
resentations, one could further question how good can the
lifted IR code support downstream security applications and
transformations, and what are the limitations of that. To date,
a thorough study regarding this point is still missing.

Emulation-Style IR (EIR) vs. High-Level IR (HIR). Fig. 2
compares compiled-IR with McSema-generated IR. Findings
in Sec. VI will show that popular static and dynamic lifters
can generate either emulation-style IR (i.e., Fig. 2(c)) or more
high-level IR code that is comparable to compiled IR code in
Fig. 2(b). Refinement in Sec. II has clarified the process of
going from an emulation-style IR to high-level IR. To ease
the presentation, LLVM IR compiled from source code by
clang is referred to as compiled IR (CIR). LLVM IR yielded



by lifters following the emulation paradigms is referred to as
emulation-style IR (EIR), whereas LLVM IR yielded by lifters
going through further refinement as high-level IR (HIR).
Transformations Involved in Emitting EIR and HIR. With
manual efforts in studying lifter codebase, we put transforma-
tions used during lifting into three categories: 1 optimizations
offered by the LLVM framework, 2 simple optimizations
developed by lifters, and 3 transformations recovering high-
level program features developed by lifters. 1 simplifies lifted
IR code in a functionality-preserving manner. 2 , e.g., re-
moving bloated utility functions, should also be functionality-
preserving if implemented correctly. However, 3 tackles a
challenging task of recovering information (e.g., type) lost
during compilation. According to our manual study, lifters
emitting EIR (e.g., McSema; see Sec. V-A) leverage 1 and
2 . However, lifters emitting HIR typically employ 1 , 2 ,

and 3 to generate high-level code. This explains the core
difficulty of producing HIR that is functional preserving; see
our empirical evaluation on correctness in Sec. VI-E.

IV. STUDY OVERVIEW

Sec. III has clarified that we aim to study how good can the
lifted IR code support downstream security applications and
transformations, and what are the limitations of that. We now
clarify several aspects and present our study overview.
Correctness vs. Expressiveness. Functionality correctness is a
critical aspect to assess binary lifters. Functionality-preserving
lifters can, in principle, support to (semi-)automatically fix a
bug in legacy code or to migrate legacy code — with the
end result again being a functional executable. We measure
correctness of popular binary lifters and present corresponding
discussions in Sec. VI-E: the results are promising and inspir-
ing. However, we clarify that measuring correctness should not
be the primary focus of this SoK paper due to the following
reasons. 1) Existing works have launched testing and formal
verification toward binary lifters [66], [38], from where we can
gain an in-depth understanding on the correctness of lifters.
2) We believe that supporting static code analysis, which
typically does not require to recompile and execute the lifted
IR, is of equal importance with correctness. Particularly, our
discriminability study in Sec. IV-B measures lifters’ support
of similarity analysis, which is a very actively-studied field
(e.g., [51], [120], [116], [74], [124], [44], [46]). Similarly, the
security community has devoted significant efforts to advanc-
ing decompilation (e.g., [59], [91], [97], [122]), and we explore
lifters’ support of decompilation in this work. 3) Generating
flawless high-level code is a well-known challenge for reverse
engineering (not just lifters). To do so, binary lifters, in
principle, need to equip the “re-assembleable disassembling”
scheme which is not mature [110], [108], [43], [52]. To date,
decompiled C/C++ code mainly serves (human-based) process
of analysis and comprehension, not for recompilation.

We fully agree that functionality-preserving binary lifters
can extensively promote binary fixing, patching, and legacy
code migration. However, these tasks, in general, can also be
done on assembly code [41], [111]. In all, LLVM IR excels

in promoting (static) analysis. The LLVM community has
taken years of effort to develop analysis infrastructures; re-
implementing those infrastructures on assembly code can take
a huge effort. More importantly, assembly code does not have
type or other high-level code information, which makes itself
less analysis-friendly compared with LLVM IR.
Measuring IR Expressiveness. To measure correctness, ex-
isting works have used straightforward approaches involving
testing or formal verification [38], [66], [113]. However, the
formulation of oracles or specifications relevant to our goal
— to study how good can the lifted IR support security tasks
and transformations and what are the limitations of that —
would be challenging, recondite, and perhaps impossible. For
example, while “structuredness” of lifted IR code may be
(partially) reflected by counting recovered functions, function
information may not be the key to security analysis, such as
buffer overflow detection. It may also be infeasible to compute
the syntactic similarity between lifted IR and compiled IR
for use as an oracle. This is due to the fact that lifters may
implement different code-generation templates and tactics,
thus producing syntactically different IR codes that provide
comparable support for downstream tasks.

This research tackles the aforementioned challenge in a
pragmatic way. We employ three downstream applications
and quantify how lifted IR code supports these representative
tasks. These applications profile the quality of lifted IR code
from conceptually different aspects. More importantly, they
are the building blocks of many real-world security, systems,
and software re-engineering applications. This way, we ensure
the inclusion of our study and the credibility of our findings.
Assessing Upper-Bound Quality Using Compiled
IR. Aligned with existing works [19], [47], we deem
that compiler-generated IR denotes the upper bound quality
of lifted IR. This study, for the first time, empirically
benchmarks “how far we are” from this perspective. Hence,
instead of defining how good the lifted IR should be
w.r.t. downstream tasks (which is obscure), we check whether
lifted and compiled IR have close performance. We now
introduce three representative downstream tasks.

A. Pointer Analysis
Pointer analysis establishes which pointers can point to the

same variables or memory objects. Pointer analysis is the
cornerstone of most data and control flow analyses, and it
enables many security applications. Hence, the first part of
this study examines whether pointer analysis can be launched
in a fool-proof manner using lifted IR code. This reveals the
overall difficulty of performing rigorous static analysis using
lifted LLVM IR code.

We leverage the state-of-the-art LLVM pointer analysis
library, SVF [102], [103]. SVF performs sparse value flow
analysis to iteratively construct value flow and pointer analysis
results. We use the default flow-sensitive pointer analysis [102]
provided by SVF. Each pair of pointers is assessed by SVF,
which determines whether they are MustAlias, MayAlias,
or NoAlias. That is, whether they always, may, or never
point to the same data region, respectively.



Variable recovery is a prerequisite of pointer analysis.
SecondWrite [19], [47] has developed fully fledged variable
recovery techniques, which demonstrated promising results
almost a decade ago. Our preliminary study finds that some
binary lifters (e.g., RetDec [68] and mctoll [80]) re-
cover a reasonable number of variables. This indicates that
benchmarking these binary lifters in terms of pointer analysis
is well-timed. Furthermore, LLVM pointer-analysis facilities,
including SVF, are highly demanding and have been widely-
adopted in security research [32], [62], [64], [31], [65], [54].

B. Discriminability Analysis

The second thrust focuses on measuring the discriminability
of IR code by quantifying the feasibility of determining the
(dis)similarity of two pieces of IR code that implement the
same or different tasks. Holistically, discriminability is the
base of various similarity-based security applications. For
instance, malware clustering and code plagiarism detection
are usually conducted by analyzing the (dis)similarity between
unknown software and samples of known software [118],
[109], [75], [20], [112], [16], [30].

We extend a code embedding tool, ncc [26], that was
developed in the LLVM framework. Code embedding tech-
niques convert code into numerical vectors, such that similar
codes are separated by a shorter cosine distance in numerical
space than dissimilar codes. Thus, ncc comprehends LLVM
IR code by constructing a so-called “contextual flow graph,”
which simultaneously incorporates IR data flow and control
flow features. It then uses graph neural network (GNN)-based
embedding models [125] to extract a numerical vector for each
IR program. ncc also provides an algorithm classification
model of the extracted numerical vectors, which is trained on
the POJ-104 dataset [82]. The POJ-104 dataset contains 44,912
C/C++ programs that implement entry-level programming
assignments for 104 different tasks (e.g., merge sort vs. two
sum). Higher classification accuracy indicates that it is easier
to decide the (dis)similarity of two LLVM IR programs.

C. C Decompilation

C decompilers are commonly used as the basis of many
security and systems applications, including off-the-shelf
software security hardening, vulnerability detection, cross-
architecture code reuse, and profiling [55], [67], [107], [37],
[63]. In general, C decompilers lift executables into (cus-
tomized) IR, and conduct a set of analysis passes to re-
cover high-level control structures (e.g., loops) and code
patterns [28]. The RetDec framework [68] provides a de-
compiler, called llvmir2hll, to convert LLVM IR code
into C source code. This decompiler has been shown to have
comparable accuracy with commercial tools [76]. We measure
whether compiled IR and lifted IR code can induce decompiled
C code of similar quality.

V. STUDY SETUP

Given a C program p, we use clang to compile and
emit LLVM IR code pir. We then directly compile p into
an executable e. We use either static or dynamic binary lifters

to process e and produce a piece of lifted IR code, namely
p′ir. Given pir and p′ir both derived from p, we feed them into
downstream tasks and manually inspect potentially deviated
analysis results. We aggregate the harvested information to
deduce empirical findings.

We study unobfuscated ELF executable: reverse engineering
is error-prone for obfuscated code. Sec. VI presents detailed
evaluation when compiling e with clang (ver. 10.0) and no
optimization. Sec. VII and Sec. VIII further explore cross-
compiler, cross-optimization, and cross-architecture settings.

TABLE I
BINARY LIFTERS USED IN THE STUDY.

Tool Name Information
McSema [87] Developed by Trail of Bits, Inc.
McSema0 [87] Disable all LLVM optimizations used by McSema
mctoll [80] Developed by Microsoft
RetDec [68] Developed by Avast
BinRec [18] Published at EuroSys ’20

A. Binary Lifters

Table I reports four static and dynamic binary lifters that
are evaluated in our study.
McSema. We benchmark McSema, a famous static lifter
that has been developed for about a decade by Trail of
Bits. McSema performs typical emulation-style lifting, i.e., it
generates emulation-style IR (EIR), as introduced in Sec. III.
We report IR samples lifted by McSema in Fig. 2(c): its lifted
IR code manifests a distinct execution mode compared with
compiled IR code. Each machine instruction is emulated in
LLVM IR code, and the execution context, including values
of registers and memory, are passed through function callsites
(see main and foo in Fig. 2(c)).
McSema takes decompilation and binary patching (with

the end result re-emitting working binaries) as its main fea-
tures. Aligned with our research motivation introduced in
Sec. IV, McSema also champions to re-use existing LLVM-
based passes and maintain one set of LLVM passes to analyze
both source/binary code [87], However, our study reveals that
it lacks fool-proof support for static analysis tasks. McSema
uses a number of LLVM optimization passes to make the lifted
program more succinct. To reveal how compiler optimizations
could affect the performance of downstream applications, we
configure McSema to disable all imposed optimization passes
(referred as McSema0). McSema needs a disassembler as the
frontend. We equip McSema with IDA-Pro [60], a commercial
decompiler to explore the full potential of McSema.
RetDec and mctoll. We also evaluate RetDec [68] and
mctoll [80]. RetDec is a reverse engineering toolchain
developed by Avast that converts executable into LLVM
IR, and then decompiles the lifted IR into C code with
llvmir2hll. Its design focus includes supporting static
analysis and facilitates decompilation (e.g., by reconstructing
high-level C/C++ language features) [22]. For the rest of
this paper, RetDec refers to the lifter of this toolchain,
and llvmir2hll refers to its decompiler. mctoll is an
open-source project developed and maintained by Microsoft.
Although not explicitly documented [81], we find that its



code generation paradigm is similar with RetDec, indicating
mctoll’s decent support for analysis-related tasks.

We find that RetDec and mctoll can generate LLVM
IR that is visually closer to compiled LLVM IR. We consider
these two lifters generate high-level IR (HIR), which is distinct
with EIR lifted by McSema. While IR lifted by both lifters
manifests similar visual representation, RetDec primarily
recovers local variables and types, whereas mctoll emulates
the computation of some CPU registers. This is likely due to
challenges of recovering certain local variables. Consequently,
mctoll-lifted IR code can impose higher challenge in static
(data flow) analysis, as will be shown in Sec. VI-B.
BinRec. We also study a recently-released dynamic lifter
BinRec (EuroSys ’20 [18]). BinRec takes an executable
as its input, and employs S2E [35], a symbolic execution
engine, to discover program inputs that can lead to new
execution paths. S2E runs executables within Qemu, and
for each logged execution trace, a LLVM IR trace will be
generated accordingly. S2E also provides RevGen [34] to lift
executables into LLVM IR code. RevGen uses IDA-Pro and
McSema as its front-end [10], which overlaps with our setup
of benchmarking McSema. Therefore, we do not pick RevGen
for evaluation. BinRec denotes the latest dynamic lifter in
this field, and functional correctness is an explicit design
goal of BinRec (which is well demonstrated in our study of
functional correctness; see Sec. VI-E). Therefore, code reuse
becomes nicely feasible after recompiling lifted IR code into
standalone executable.

We clarify that decompilation (and other static analysis
tasks) are not explicit design goals of BinRec. Overall,
BinRec performs emulation-style lifting; it generates stan-
dalone IR programs by merging lifted IR traces, which, in
principle, eases whole-program rewriting and recompilation.
BinRec places all lifted IR code into a large LLVM IR
function named wrapper. This way, the original function
information and the call graph are deprecated in the output
of BinRec, which might cause confusion when conducting
downstream tasks. This may arise, for example, during the use
of binary code analyzers (e.g., BinDiff [2]), which implement
call graph-based algorithms or conduct function-level analysis.

Also, while dynamic lifters usually suffer from incomplete
code coverage, S2E has shown very good support to compre-
hensively discover program paths [33]. Our observation shows
that BinRec can achieve very good coverage for most C
programs evaluated in this research, even for highly complex
SPEC C programs.

We indeed spent considerable effort to explore other lifters.
For instance, bin2llvm [4] is seen to produced too many
pieces of broken IR code, and is no longer actively maintained.
We evaluated Rev.ng [95], which performs apparently worse
than other lifters and is therefore omitted. We also investi-
gated another recently released dynamic lifter, Instrew [48],
which yielded a large volume of broken outputs. Some other
popular frameworks can convert binary code into (customized)
low-level IR, e.g., angr [99] lifts assembly instructions into
VEX IR. Our study primarily focuses on binary lifters that

convert assembly programs into compiler IR; this way, rich
resources (e.g., analysis passes) provided by the compiler
framework could be smoothly reused in analyzing low-level
code without reinventing the wheel [19], [47], [18]. In short,
it might not be inaccurate to assume those four tools represent
the three best static and one best dynamic lifters that convert
binary code into LLVM IR by the time of writing this paper.

TABLE II
STATISTICS OF THE TEST PROGRAMS.

Total # of SVF test cases 84
Total # of alias facts 169
Total # of POJ-104 programs 44,912
Total # of SPEC INT 2006 C programs 9

TABLE III
CHANGES WE MADE TO BINARY LIFTERS AND RELEVANT TOOLS.

Tool Changes
McSema Remove compiler and linker inserted functions
McSema Create McSema0 by disabling all optimizations
BinRec Several enhancements and bug fixes
mctoll Support 20 new external function calls
ncc Completely rewritten in PyTorch [89]
llvmir2hll Add ten unsupported LLVM IR instructions

B. Downstream Task Setup and Test Case Selection

Table II summarizes the statistics of our test cases. We now
elaborate on the setup of each downstream task as follows.
Pointer Analysis. We use all 24 flow-sensitive test cases
shipped by SVF. For each test program, some pointer pairs
are annotated with MustAlias, MayAlias, or NoAlias.
They are the ground truth of pointer analysis. We study
whether lifted and compiled IR code can support SVF to
generate consistent and correct pointer analysis results w.r.t.
the ground truth. Note that these 24 test cases, though encod-
ing different flow-sensitive pointer analysis challenges, have
relatively simple control structures. To increase the difficulty,
we also perform equivalence modulo inputs (EMI)-based mu-
tation [69] to generate extra 60 programs with more complex
program structures. EMI-based mutation has been widely used
to mutate C code and test compilers [69], [104], [70]. We
manually confirm and adjust alias predicates in case they were
changed by EMI mutations (e.g., after EMI mutation, a pair
of “must not alias” pointers could become “may alias”). 84
test programs contain in total 169 pointer alias facts to check.
Discriminability Analysis. We use the default setting in the
ncc paper [26] to split POJ-104 programs into training, vali-
dation, and testing sets. Each dataset will be either compiled
or lifted into LLVM IR programs. That is, we will create five
training, five validation, and five testing datasets. We then train
one ncc LLVM IR embedding model and one classification
model of POJ-104 using a training/validation dataset. The
trained models are tested using the corresponding test dataset.
The model training is completed at 50 epoch. We use the
default model hyper parameter settings specified by ncc.
C Decompilation. We feed lifted and compiled IR code into
llvmir2hll, and measure decompilation quality. We collect
all C programs from the SPEC INT 2006 test suite (in total



TABLE IV
POINTER ANALYSIS EVALUATION RESULTS. SVFG DENOTES SPARSE VALUE FLOW GRAPH [102], WHOSE SIZE INDICATES THE complexity OF PROGRAM

STATIC ANALYSIS. WE REPORT THE AVERAGE DATA FOR POINTERS, OBJECTS, SVFG GRAPHS, AND PROCESSING TIME EVALUATION.

Tool MustAlias MayAlias NoAlias #Pointers #Objects #SVFG Nodes #SVFG Edges Processing Time
Accuracy Accuracy Accuracy (CPU Seconds)

Clang 100.0% 100.0% 100.0% 345.9 68.6 164.7 116.4 2.5
RetDec 0.0% 0.0% 17.8% 73.0 14.2 25.2 8.8 3.9
mctoll 0.0% 0.0% 0.0% 934.8 52.9 168.8 102.0 5.7
McSema 0.0% 0.0% 0.0% 3393.1 141.2 953.5 817.6 19.8
McSema0 0.0% 0.0% 0.0% 96646.2 2682.5 26686.1 20802.8 463.5
BinRec 0.0% 0.0% 0.0% 879.4 41.9 166.7 127.7 5.7

TABLE V
TOTAL TEST CASES AND FAILED LIFTING CASES.

Dataset SVF POJ-104 SPEC
Total test cases 84 44,912 9
RetDec 0 2 0
mctoll 14 23,351 9
McSema 0 85 0
McSema0 0 72 0
BinRec 2 9,668 0

nine programs) in this study. We exclude 3 C++ programs
in the SPEC INT 2006 dataset, since decompiling C++ code
is highly challenging, and is not supported by llvmir2hll
which only converts LLVM IR code into C code.

C. Changes Made on IR Lifters and Downstream Applications

Table III reports augmentations we made on the lifters
and downstream applications. Overall, we spent considerable
manual efforts, which are documented at [11] and released
at [1]. Particularly, while llvmir2hll is part of the RetDec
framework, it is mature enough to decompile IR generated by
both RetDec and clang. As for IR generated by other lifters,
a few statements are not supported, given that some lifters
seem to use LLVM IR statements that are not commonly-
picked by clang. We patched llvmir2hll to support all
encountered statements. With these patches, llvmir2hll
can decompile IR lifted by other lifters.

VI. FINDINGS

This section presents our findings when lifting executables
compiled with clang and no optimizations. We present cross-
platform, cross-compiler, and cross-optimization evaluation in
Sec. VII and Sec. VIII. We compare lifter-enabled solutions
with binary-only tools in Sec. IX.

A. Binary Lifting Results

We compile all test cases shown in Table II into 64-bit
x86 executables as the lifter inputs. We report the statistics
of lifting failures in Table V. When lifting SVF programs,
mctoll throws exceptions for seven cases, and also generates
seven lifted LLVM IR code that are broken. When processing
POJ-104 test cases, RetDec throws two exceptions. mctoll
cannot process C++ programs, leading to 23,351 failures to
lift POJ-104 programs, and also fails to lift all nine SPEC
programs (see our artifacts [1] for error logs).

Static lifting of SVF and POJ-104 programs can be finished
within a few seconds, whereas lifting SPEC programs can
take several minutes to a few hours. BinRec is slower than

others, as it uses symbolic execution to explore program paths.
However, as SVF test programs are small, there are only
two programs that cannot be processed by BinRec. When
performing symbolic execution of the POJ-104 programs, we
set the timeout as 10 minutes; 9,668 (21.6% of) programs
cannot be lifted within this threshold. The function coverage is
93% for successfully-lifted programs. We also emphasize that
these failures can be circumvented when configuring S2E with
concrete inputs, or replacing with better symbolic execution
engines. This is not the fault of BinRec. As for SPEC
programs, we conduct symbolic execution for each case for
50 hours, as these are much larger than other programs. We
obtain an average function coverage of 23%. Such coverage
should not impede the measured quality of decompiled C code,
as will be explained in Sec. VI-D. We also assess cross-
compiler, cross-optimization, and cross-architecture settings,
and the results of lifting executables under these settings are
given in Sec. VII and Sec. VIII, respectively.

B. Pointer Analysis

Table IV reports the evaluation results. As mentioned above,
SVF test cases are annotated with the pointer alias ground
truth. We count analysis results that are not equal to the ground
truth as failures of lifters. For results that are equal to the
ground truth, we manually inspect the details and confirm
those are not false positives. Note that when lifters generate
IR code with broken annotations (see Manual Study below;
“annotations” are special function callsites using two pointers),
SVF might also report NoAlias; these are false positives.

While compiled IR supports fool-proof analysis, Table IV
shows that lifted IR has trivial support. No MayAlias or
MustAlias relations can be correctly recognized (see discus-
sion below). SVF also reports #pointers and #memory objects
identified from each program. Each pointer may point to null,
one, or several objects. We also report #nodes and #edges
on the sparse value flow graph (SVFG) [102]. SVF performs
pointer analysis by first constructing the SVFG, denoting the
data dependency among program variables. These four criteria
indicate the complexity of conducting static analysis (not
merely pointer analysis) since the more complex program data
dependency is, the higher the complexity that static analysis
could encounter. We also report average processing time of
SVF, which is consistent with the graph complexity.
Manual Study. SVF test cases annotate alias by placing a pair
of pointers in a special function call, as follows:

MAYALIAS(p,q); //p and q should be ’’may alias’’



TABLE VI
INSPECTING 24 SVF IR PROGRAMS LIFTED BY RETDEC .

Correct Inconsistent & Not Fixable Inconsistent & Fixable
1 7 16

When the analysis pass of SVF reaches a callsite of
MayAlias during its traverse of the LLVM IR control flow
graph, it checks whether the two parameters of this callsite
point to the same object. NoAlias and MustAlias are
annotated similarly. However, McSema completely changes
the callsite interfaces. As mentioned in Sec. V-A, functions in
its lifted IR are in the following form:
define @MAYALIAS(State %s, PC %pc, Mem* %memory)

from which SVF cannot extract two target pointers for check-
ing. Similarly, as introduced in Sec. V-A, function information
is trimmed from the outputs of BinRec. Therefore, function
callsites like MayAlias are absent in the lifted IR code.

Sec. V-A introduces that RetDec emits succinct and vi-
sually superior IR code, while mctoll sometimes emulates
computation of CPU registers, which may be due to its
struggling to recover certain variables. mctoll thus produces
much more obscure IR code than RetDec, as shown in the
“#Pointers” column of Table IV.
RetDec marginally outperforms others by generating sev-

eral true positives. We also notice that the average SVFG graph
of RetDec-generated IR is smaller than that of compiled IR.
This is due to the heavy optimizations that are applied by
RetDec (see discussions in Sec. VI-C). To determine which
aspect of the lifted IR code can be enhanced for pointer
analysis, we manually check and fix inconsistencies in the
RetDec-lifted IR to correct the analysis results. We iterate
all supplied SVF test cases (24 programs), but exclude the
60 EMI-based mutations, as they are too complex to be fixed
manually. The manual confirmation results are presented in
Table VI; these show that all of the alias facts of only one
program are correctly analyzed, and hence do not need to be
fixed. Seven programs are too challenging to fix, as SVF’s
flow-sensitive analysis conservatively analyzes arrays, whereas
RetDec does not recover arrays in the lifted IR at all. We
manually fix the remaining 16 cases to correct the pointer
analysis results. The results are given in Table VII.
RetDec exhibits reasonable accuracy in recovering vari-

ables (except those from arrays, as revealed in Table VI).
However, inaccurate type-inference impedes pointer analysis;
213 cases are caused by incorrectly treating a local variable
of pointer type (e.g., i8*) as an integer (e.g., i32). We also
find many function prototype-recovery errors (e.g., a parameter
of i32* type is recovered as i32). We also add a few new
statements and adjust existing statements (66 in total).
Findings. Our observation shows that modern (static) binary
lifters, particularly, RetDec and mctoll, can recover vari-
ables reasonably well (see Table VII). They also strive to
infer types and function prototypes, although the accuracy
is low. As a result, the induced IR code can hardly support
rigorous static analysis. We summarize two major obstacles
that could be addressed: 1) Type recovery, particularly, at

TABLE VII
MANUALLY FIXING 16 SVF LLVM IR PROGRAMS LIFTED BY RETDEC TO

CORRECT POINTER ANALYSIS RESULTS.

Programs Variable Function Added/Tweaked Variable
Type Prototype Statements Recovery

branch 1.c 5 2 2
branch 2.c 6 4 0
branch 3.c 20 4 4

strong update.c 1
global 1.c 25 4 2
global 2.c 28 4 2
global 3.c 16 2 3
global 5.c 20 2 2
simple 1.c 4 4 2
simple 2.c 6 4 3
simple 3.c 4 4 2
struct 1.c 6 4 2
struct 2.c 6 4 2
pcycle1.c 6 4 1
pcycle2.c 41 2 36
test su.c 19 2 5

Total 213 50 66 2

least distinguishing variables of pointer and non-pointer types.
Recovering composite data types like C array and struct is not
yet supported and could be challenging [100]. 2) Function
prototype recovery, particularly, generating more “high-level”
function prototype aligned with compiled IR code. Function
prototypes generated by McSema are highly inconsistent with
clang, RetDec, and mctoll generated IR code.

We emphasize that the aforementioned issues are common
limitations of binary lifters. Some engineering mismatches
of McSema and BinRec hinder the pointer analysis passes
of SVF. More importantly, our manual inspection shows
that McSema and BinRec struggle to recover the variables
of pointer types. Thus, the fixing of shallow “engineering
mismatches” in McSema and BinRec cannot substantially
enhance the pointer analysis accuracy. Overall, RetDec
marginally outperforms the other binary lifters for this task
by performing well in recovering variables and recovering a
small number of variable types. It also preserves the callsite
prototype (e.g., the callsites of the MayAlias utility func-
tion). Nevertheless, even for this “best” tool, we find that
it implements rudimentary inference passes [8], [6], [7]. Its
inference modules therefore require principled improvement,
rather than only minor engineering-level modifications.
Possible Enhancements. Our further manual study on the
source code of binary lifters shows that inconsistencies ex-
posed in this evaluation (e.g., type recovery failures) are not
primarily due to bugs. Rather, lifters have not fully imple-
mented research products in this field (to date, relevant passes
are generally rudimentary [8], [6], [7]). Existing research has
proposed static analysis approaches for variable recovery and
type inference, such as Value Set Analysis (VSA) [23], [24],
[72]. Function prototype recovery can be conducted following
very similar principles or with AI techniques [36], [19]. Also,
we note that binary lifters such as McSema employ a com-
mercial tool, IDA-Pro [60], as its reverse engineering frontend.
In addition to function boundary information currently being
acquired from IDA-Pro, we suggest McSema to leverage
function prototypes already inferred by IDA-Pro. Currently,
IDA-Pro is not fully used by McSema, which might be due to
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Fig. 3. Classification analysis results. We report accuracy of each tool across all 104 classes of the POJ-104 dataset.

“open-source” concerns (see a note from the lead developer of
McSema [56]). Overall, we advocate lifter developers to adopt
research products or explore the full potential of its employed
third-party tools. It can thus ease the adoption of analysis
facilities provided by the LLVM ecosystem. See Appx. E for
further exploration of promoting pointer analysis.

TABLE VIII
AVERAGE CLASSIFICATION ACCURACY. HIGHER ACCURACY INDICATES

BETTER SUPPORT OF VARIOUS SIMILARITY-BASED APPLICATIONS.

Clang 87.3% McSema 46.0%
McSema0 4.3% RetDec 81.9%
mctoll 77.4% BinRec 11.6%

C. Discriminability Analysis

Discriminability analysis is evaluated to classify POJ-104
programs. Fig. 3 reports the classification accuracy across 104
classes, with the average number given in Table VIII. As afore-
mentioned, mctoll does not lift executable compiled from
C++ programs, and BinRec failed over 9K cases. Therefore,
their accuracy of some classes (e.g., 27) are omitted.
McSema has an average accuracy of 46.0%, while

McSema0, with no optimization applied, drops to barely
functional. This inconsistency illustrates the importance of
using code optimization. Fig. 3 shows that RetDec is even
better than clang for certain classes (e.g., class 57). This
is reasonable: when compiling POJ-104 programs into IR
using clang, we disable any optimization (-O0). In con-
trast, RetDec optimizes lifted LLVM IR code using its own
optimization and LLVM optimization passes. Our manual
study shows that RetDec applies 38 optimization passes
when lifting an executable file, where 26 are from the LLVM
framework, and 12 are implemented by its own.

Sec. IV-B has introduced that ncc extracts contextual flow
graph [26], denoting how data flow is propagated and how
control structures can influence data propagations. Fig. 2 has
motivated this study by showing that McSema maintains local
variables in an emulation-style paradigm as follows:

define @main(State %s, i64 %pc, Mem %memory) {
eax = %s.Regs[0]; ebx = %s.Regs[1]; ...
... // operations among vars. and %memory

where some LLVM identifiers are initialized at the beginning
of every function and used to mimic CPU registers. A global

memory array, representing memory stack, is shared and
accessed by all functions. Such a paradigm, while faithfully
emulating the machine code computation, exhibits distinct data
access and usage patterns, undermining discriminability anal-
ysis. In other words, POJ-104 programs of different categories
become undesirably indistinguishable since their data flow
patterns are too similar.
BinRec shows relatively lower accuracy for this evaluation

due to similar reasons. Although the average function coverage
rate of BinRec is 93% when processing POJ-104 programs,
the lifted code is put into a unified wrapper function, breaking
the original call graph. Our manual study on the wrapper
functions shows that it is generally difficult for human to
identify the similarity of two wrapper functions implementing
different tasks. Typically, a few thousand IR statements, corre-
sponding to several logged execution traces, are merged within
one wrapper function. Local variables are named aligned with
CPU registers (R ECX, R ESP, etc.), mimicking the machine
computation occurred on the logged execution traces.

For certain classes, both compiled and lifted IR have low
accuracy. For instance, many IR programs of class 85 are
labeled as class 100. After inspecting the source code, we
find that programs of class 85 and class 100 have similar data
structures and access patterns, i.e., a matrix is defined and each
cell in the matrix is updated using its adjacent cells.
Findings & Lessons. Lifters like RetDec and mctoll
show encouraging support for discriminability analysis, whose
performance is comparable to compiled IR code (i.e., the
“upper bound”). Sec. IX and Appx. B further compare lifter-
enabled approaches and binary-only tools over binary diffing
tasks, which induce consistent findings. In sum, our findings
reveal promising progress and continuous effort made by the
lifter developers and the community. It might not be inaccurate
to assume that these findings increase the confidence for
security researchers to use binary lifters, particularly RetDec
and mctoll, in similarity analysis and binary diffing-related
tasks, e.g., code patch search [120], [124], [121].
Possible Enhancements. Our manual study shows that
program optimization is critical in generating concise and
discriminable IR code. We note that Table VIII has shown a
significant improvement comparing McSema with McSema0.
That is, by enabling LLVM optimization passes (eliminating
deadcode, inlining routine functions, etc.), even the emulation-



style lifting can exhibit non-trivial support of discriminability
analysis. Again, optimization passes customized by RetDec
(e.g., [8], [6], [7]) can be referred by developers of other lifters
as the starting point for enhancement.

Our study advocates for high-level lifting (see research
motivation in Sec. III) instead of emulation-style lifting which
mimics the physical stack with a global array. RetDec and
mctoll, when reasonably meeting this criterion, have much
better performance that is close to compiled IR code. RetDec
has certain disassembling flaws (failed to recover certain code
components; also noted in Sec. VI-E), which likely explains
ways to further enhance its accuracy (i.e., eventually reaching
87.3%). Regarding local variable recovery, the SecondWrite
paper [19] has proposed symbolic execution-based approaches
and demonstrates the scalability on complex SPEC programs.
Appx. E further assesses a recent AI-based approach [59] to
predicting debug information from stripped binary code, which
could boost local variable recovery as well.
Threat To Validity: Potential Bias of DNN-Based Dis-
criminability Analysis. Many recent works on binary code
similarity analysis employ neural networks and its enabled
representation learning (e.g., [44], [46]). However, to our
knowledge, ncc is the only tool that presents an end-to-end
solution to generate embeddings of LLVM IR code which
can smoothly support discriminability (similarity) analysis. It
could be difficult to estimate the effort to migrate other code
embedding tools (e.g., [44], [17]) to the LLVM ecosystem.

We clarify that ncc not merely builds on syntactic in-
formation. It is trained over the contextual flow graphs of
LLVM IR [26]. Semantics-level features, including both data-
and control-flow, are leveraged to construct such contextual
flow graphs. We admit that it is still an open problem for
DNN models to precisely reason about code semantics (e.g.,
analyzing code inlining or eliminating dead code). However,
more rigorous semantics-based approaches (e.g., using sym-
bolic execution and constraint solving for code similarity)
generally suffer from scalability issues and are mostly limited
to analyze execution traces or basic blocks (e.g., [53], [78]).
To the best of our knowledge, ncc represents the latest out-of-
the-box solution offered by the LLVM community to deliver
well-performing and scalable analysis of code similarity.

Also, explaining DNN predication is still challenging (espe-
cially for human), which could depend on subtle embedding
representations and model design. We leave it as a future work
to leverage recent advances in explainable AI (XAI) [57] to
further interpret the predictions of ncc.

D. Decompilation Analysis

With the prosperous development of automated analysis and
retrofitting utilities on compiled IR code, C code decompila-
tion retains its importance by supporting (layman) users for
code comprehension and reuse. Software decompilation, in
general, is to generate high-level source code for the (human-
based) process of analysis and comprehension, not for (auto-
mated) recompilation. Given that structured code is shown as
easier for human to understand [42], [83]. decompiler outputs

with fewer “unstructured” control flow statements, i.e., goto
statements, deem better quality [28]. We measure structured-
ness of decompiled C code by reusing the metrics in [28] to
count #goto. We also measure the average LOC. Lengthy
C code implies relatively low readability for even experts.
Since McSema and McSema0 contain many utility functions
to emulate machine instructions, we count average LOC per
user-defined function instead of the entire decompiled code.
We also clarify that these metrics are not applicable to assess
quality of lifted IR, since #goto and LOC likely won’t affect
automated static analysis and comprehension on LLVM IR.

TABLE IX
AVERAGE STRUCTUREDNESS AND LOC PER USER-DEFINED FUNCTION OF

SPEC PROGRAMS.

clang McSema McSema0 RetDec BinRec
#goto 3188.4 6026.5 6926.8 1709.6 6344.1 (27894.4)
LOC 44.3 247.6 325.5 168.7 70947.1

Table IX reports the structuredness evaluation results. As
discussed in Sec. VI-B, mctoll failed lifting all SPEC pro-
grams. Therefore, mctoll is omitted in Table IX. In addition,
llvmir2hll cannot finish decompiling LLVM IR code of
403.gcc and 400.perlbench lifted by BinRec within
two weeks. Decompiling 403.gcc IR code lifted by RetDec
has similar timeout issue. 403.gcc and 400.perlbench
are two largest SPEC C programs. Therefore, we exclude these
two programs when reporting Table IX.

Among all the lifted C code, RetDec shows even fewer
goto statements compared with clang (see Findings for
discussions). In contrast, McSema and McSema0 retained
almost double amount of goto statements. As aforemen-
tioned, BinRec covers on average 23.0% functions for each
SPEC program, inducing on average 6344.1 goto statements
per program. As a result, we estimate that BinRec would
generate about 27894.4 goto statements if full coverage was
achieved. We also obtained consistent results for the LOC per
function evaluation: compiled IR exhibits best performance for
this criterion, followed by RetDec and McSema. BinRec
maintains the entire lifted IR code into a huge “wrapper”
function, thus manifesting relatively higher LOC.

Fig. 4 presents a case study by comparing decompiled
C code of function global opt in 429.mcf. A goto
statement appears within the loop in Fig. 5(a), corresponding
to a control transfer in the IR code. Accordingly, our manual
study shows that RetDec has already optimized away that
seemingly useless control transfer. This indicates the impor-
tance of code optimization. McSema (and McSema0) shows
likely sloppy code patterns, where a (useless) goto is placed
right before its targeted label. This code pattern might partially
explain that McSema has almost double remaining #goto.

While such special goto patterns might be easy to pinpoint
and elide, Fig. 4 has also revealed the low readability of
C code decompiled from McSema generated IR. C code in
Fig. 4 has been largely simplified: the global opt function
decompiled from McSema generated IR has 298 LOC, and the
same function decompiled from McSema0 generated IR has
234 LOC; both functions are verbose and hard to read.



(a) C Code Decompiled fromClang Generated IR

int64_t global_opt(void) {
int64_t v1 = 5;
while (v1 != 0) {
printf("active arcs : %ld\n", g1.e5);
primal_net_simplex(&g1);
if (v1 == 0) goto label_pc_unknown;
int64_t v2 = price_out_impl(&g1);
if (v2 < 0) {

printf("not enough memory, exit");
exit(-1);

}
v1--;

}
label_pc_unknown: return 0;
}

(b) C Code Decompiled fromRetDec Lifted IR

int64_t global_opt(void) {
int64_t v1 = 5;
printf("active arcs : %ld\n", g1.e5);
primal_net_simplex(&g1);
while (v1 != 0) {
int64_t v2 = price_out_impl(&g1);
if (v2 < 0) {

printf("not enough memory, exit");
exit(-1);

}
v1--;
printf("active arcs : %ld\n", g2.e5);
primal_net_simplex(&g2);

}
}

Mem * global_opt(State * s, int64 pc, Mem *mem) {
int64_t v1 = s->e6.e13.e0.e0;
while (v1 != 0) {
Mem *mem1 = printf(s, mem);
Mem *mem2 = price_out_impl(s, pc+0x324f, mem1);
v1 = v1 - 16;
if (v1 == 0) goto lab_block_400ad4;
int64_t v29 = (&s->e6.e1.e0).e0;
if (v29 < 0) {

Mem *mem3 = printf(s, mem2); exit(-1);
}

}
goto lab_block_400ad4;
lab_block_400ad4: return mem4;

}
(c) C Code Decompiled fromMcsema Lifted IR

Fig. 4. Decompilation case study of 429.mcf. The decompiled code, in particular the McSema case, is extensively simplified for readability. Indeed,
global opt decompiled from clang and RetDec generated IR has 32 and 45 LOC, respectively. In contrast, global opt decompiled from McSema
and McSema0 generated IR are obscure and verbose (298 and 234 LOC).

Findings. To date, decompiled C code is mostly used by
experts for code comprehension. Although we have extensively
simplified the sample code in Fig. 4, it should be accurate to
assume that any users with elementary C programming back-
ground can spot the (syntactic) difference between Fig. 4(a)
and Fig. 4(c). In contrast, Fig. 4(a) and Fig. 4(b) are closely
correlated. In addition to good support for discriminability
analysis, this section has reported findings that compact IR
code recovered by RetDec largely improves the readability
and structuredness of its decompiled C code. Soon we will
show that decompilation evaluation over cross-compiler, cross-
optimization, and cross-architecture settings also report con-
sistently encouraging findings (see Sec. VII and Sec. VIII).

In addition to (commercial) decompilers which can generate
relatively more structured C code (see Sec. IX), show that there
are free and highly extensible lifter-based solutions with decent
performance. Consistent with findings in discriminability anal-
ysis, we interpret that: 1) code optimization plays a critical role
in supporting decompilation and generating C code of better
quality, and 2) recovering local variables helps to eliminate
the emulation-style lifting, enabling the generation of succinct
C code with higher readability.
Possible Enhancements. Overall, our findings show that the
high-level lifting promotes both discriminability analysis and
C decompilation. Hence, we envision that Possible Enhance-
ments elaborated in Sec. VI-C can also be leveraged to
enhance support of decompilation. Moreover, Fig. 4 has shed
lights on conducting user survey as a future direction to
summarize more findings on the (un)structuredness of C code
decompiled from lifted IR code. Those findings can provide
practical feedback to fine tune lifters.

E. Functionality Correctness of Lifted IR Programs

Existing research has laid a solid foundation on testing
or formally verifying binary lifters [66], [38], [37]. Hence,
measuring the functionality correctness is not our primary
focus. Nevertheless, we still recompile the lifted IR code and
check their execution results to compare with other metrics.

SVF programs are relatively simple with no execution
outputs. Hence, we omit SVF programs in this evaluation.
We select one POJ-104 program from each class (in total
of 104 programs). Since no documents are shipped by POJ-
104, we manually write test inputs by reading the source
code. We successfully wrote non-trivial inputs and acquired
the corresponding outputs for 86 programs. These input/output
pairs are used to check the correctness of the lifted IR code.
For nine SPEC programs, we use their shipped scripts for
testing. The results are reported as follows:

McSema McSema0 RetDec mctoll BinRec
POJ-104 94.2% 94.2% 20.3% 22.1% 100.0%

SPEC 44.4% 44.4% 0 0 100.0%

Most IR programs lifted by McSema (and McSema0) can
pass the test cases. RetDec and mctoll show lower success
rates; we find that their successful cases are largely overlapped
(i.e., 16 simple POJ-104 programs), indicating that they show
reasonable correctness for relatively simple cases. A few IR
programs lifted by RetDec have reverse engineering failures
(annotated with “undefined function” in its outputs), imped-
ing recompilation. We use the test, ref, and train input
sets of SPEC to check the correctness. Four ( 49 ≈ 44.4%)
SPEC programs lifted by McSema and McSema0 can pass
the functionality check. Given that SPEC test cases have been
evaluated in the BinRec paper [18], we run POJ-104 cases.
As suggested by the BinRec authors, we configure S2E with
concrete inputs to lift POJ-104 cases. The evaluation is highly
encouraging: all test cases can be correctly lifted into IR and
then recompiled into another piece of executable.
Findings. McSema shows highly promising results for gen-
erating functionality-preserving IR code. In Sec. IX and
Appx. A, we further show that by generating functional
code, McSema exhibits good support for sanitization [101]
(as sanitized code needs to be executed instead of statically
analyzed). Nonetheless, as reported in this section, McSema’s
output is of low expressiveness. It does not suffice supporting
security analysis as good as compiled IR code, nor is it
comparable to that of other lifters, such as RetDec and



TABLE X
EVALUATION RESULTS FOR EXECUTABLES ON THE ARM64 PLATFORM.

Lifter Pointer Analysis Discriminability C Decompilation Functionality
MustAlias MayAlias NoAlias Classification Accuracy #goto LOC POJ-104 SPEC

RetDec 0.0% 0.0% 16.9% 74.8% 1364.6 97.5 18.2% 0.0%
McSema 0.0% 0.0% 0.0% 53.5% 12184.2 252.6 0.0% 0.0%

mctoll. Overall, we summarize that modern binary lifters
are seen to have distinct design focus, inducing different
levels of support for downstream tasks. This aspect, despite its
importance, is generally ignored by the community and could
cause great confusions in various security usage scenarios.
Lessons. It might be accurate to summarize inspiring meta-
lessons from the functionality evaluation: emulation lifting
adopted by McSema and BinRec generates LLVM IR code
that can be smoothly recompiled and executed. Its output,
however, is likely to be low-level that it is not analysis-
friendly. Hence, users aiming to recompile the lifted LLVM IR
code can opt for emulation-style lifters for better functionality
correctness guarantee. In contrast, high-level lifting with more
aggressive optimizations could be used in case users opt
for more “expressive” LLVM IR code to support analysis.
Also, LLVM IR is platform independent; hence, emulation
lifting can support cross-platform profiling and recompila-
tion [18], while existing functionality-preserving disassem-
bling (e.g., [110], [108], [49], [43]) can only support assembly
code reuse on the same platform.

VII. CROSS-PLATFORM EVALUATION

Existing research has been using (customized) binary lifters
to convert firmware samples into LLVM IR for security analy-
sis (e.g., [37], [40]). In this section, we further explore lifting
binary code compiled on the ARM architecture. RetDec and
McSema support lifting binary code compiled on the 64-bit
ARM platform. Appx. D reports the binary lifting results; only
McSema made a few (less than 1%) lifting failures.

We report evaluation results in Table X. We interpret that
de facto lifters show comparable support on 64-bit x86 and
ARM64 platforms. In particular, discriminability analysis re-
ports mostly consistent results compared with Table VIII. Both
RetDec and McSema show low support for pointer analysis.
This is intuitive: key findings that impedes pointer analysis of
RetDec and McSema in Sec. VI-B are platform independent.

Table X shows that C code decompiled from McSema-
generated IR code contains more goto. Recall llvmir2hll
cannot decompile the LLVM IR code of 403.gcc in our
decompilation evaluation on x86 platforms (Sec. VI-D). We
report that the LLVM IR code of 403.gcc can be success-
fully decompiled, and therefore, #goto in the 403.gcc case
is taken into account when computing the average results in
Table X. This case contributes over 70K goto statements,
thus largely increasing the average results.
McSema also shows surprisingly low support for func-

tionality correctness. Our manual study shows that McSema
generates an incorrect wrapper for the main function. That is,
the LLVM IR program entry point of all lifted cases are mal-
functional due to bugs. We show this erroneous code pattern
at [11]. We have reported this issue to the McSema developers.

TABLE XI
EVALUATION FOR CROSS-COMPILER AND CROSS-OPTIMIZATION

SETTINGS. “CLANG -O0” HAVE BEEN REPORTED IN SEC. VI.

Lifter Discriminability C Decompilation
Avg. Accuracy #goto LOC

gcc -O0

RetDec 78.8% 1661.3 142.3
mctoll 55.2% NA NA
McSema 15.4% 15479.3 282.7
BinRec 22.3% 6661.4(12978) 245824.2(478924.3)

gcc -O3

RetDec 78.3% 3766.4 374.3
mctoll 41.2% NA NA
McSema 10.8% 8023.2 595.1
BinRec 11.0% 1820(20078.2) 61677(680419.3)

clang -O0

RetDec 81.9% 1709.6 168.7
mctoll 77.4% NA NA
McSema 46.0% 6026.5 247.6
BinRec 11.6% 6344.1(27894.4) 70947.1(311947.6)

clang -O3

RetDec 79.6% 8971.5 276.6
mctoll 54.6% NA NA
McSema 30.2% 9367.0 554.6
BinRec 4.7% 1635(3448.7) 36256.7(76476.1)

clang -O0 NA 87.3% 3188.4 44.3

VIII. CROSS-COMPILER & OPTIMIZATION EVALUATION

Sec. V has mentioned that we use clang without any
optimizations to launch experiments in Sec. VI. Although the
lifted IR exhibits poor support for pointer analysis, we find that
lifters can generate IR code from non-optimized executables
that has quality comparable to that of compiled IR used for
discriminability analysis and C decompilation. This section
further assesses the generalizability of our findings in terms
of cross-compiler and cross-optimization settings. We use gcc
(ver. 7.5.0) and we also use full compiler optimizations (-O3)
for the evaluation. McSema0 gives notably worse results than
McSema, and is thus not evaluated. We report the binary lifting
results in Appx. D, and these are generally consistent with the
lifting results reported in Table V.

We summarize the results for different settings in Table XI;
the last row represents clang-generated LLVM IR. For
the decompilation evaluation of BinRec, a dynamic tool,
data in the parentheses denotes the estimation of induced
#goto and LOC if full coverage was achieved. mctoll
fails to lift all SPEC programs, and its results are “NA”. For
discriminability analysis, RetDec manifests high robustness
toward different compilation/optimization settings. In contrast,
mctoll and McSema show worse performance when apply-
ing full optimizations or using the gcc compiler. mctoll
gives relatively poor support for gcc compiled executable;
specifically, our manual study shows that lifting some gcc
compiled executables silently generates broken IR fragments,
without giving any warning. As admitted by the mctoll
developers [13], lifting gcc compiled executable is not fully
tested yet. McSema reuses and extends the optimization passes
of the LLVM framework (see [14]) which are generally
more correct and effective in processing clang-compiled
executables. In fact, we find that IR lifted from gcc-compiled
executables is generally more lengthy than those lifted from



clang compiled executables. This observation accounts for
the low effectiveness of McSema optimizations in lifting gcc-
compiled executables, and may also explain the lower dis-
criminability analysis accuracy for the gcc settings. BinRec
shows generally low support for discriminability analysis,
which is aligned with findings in Sec. VI-C.

Table XI implies that applying full optimizations (-O3) in
the decompilation analysis generates less structured programs,
given the higher #goto and greater LOC. Compiler optimiza-
tions create extra challenges for reverse engineering. However,
in Sec. IX and Appx. C, we will discuss observations that the
popular (commercial) decompilers, IDA-Pro and Ghidra [86],
exhibit similar trends w.r.t. optimized executables. For exam-
ple, Table XIV in Appx. C shows a comparison of the -O3
and -O0 settings, which reveals that #goto is increased for
5.4 times in IDA-Pro’s decompiled C code. In contrast, a
comparison of -O3 and -O0 settings in the decompilation
evaluation of RetDec-lifted IR code shows an even smaller
increase of #goto (3.8 times; smaller is better). Apparently,
neither lifters nor (commercial) decompilers can give fool-
proof solutions to solve C decompilation. Evaluations in
this section, however, imply the encouraging and practical
value of lifter-driven (particularly RetDec-based) solutions.
C code decompiled from McSema-lifted IR and BinRec-
lifted IR contain an unusually high #goto for the gcc -O0
setting; this is because several large SPEC programs, including
403.gcc and 400.perlbench, can only be correctly lifted
when -O0 is used, which results in many goto statements
and thereby increases the average #goto.

IX. COMPARISON WITH BINARY-ONLY TOOLS

We aim to study whether the lifted IR code exhibits good
support for downstream security tasks that is comparable to
that of clang generated IR code. To do so, Sec. VI has
studied three tasks that serve as the core building blocks of
many downstream security applications. Nonetheless, to di-
rectly compare with binary security analysis (without lifting),
we compare binary-only tools with lifter-enabled solutions in
three tasks, i.e., sanitization, binary diffing, and decompilation.
This section summarizes key findings, and we present details
in Appx. A, Appx. B, and Appx. C, respectively.

Appx. A compares RetroWrite [43], a binary rewrit-
ing framework, and lifters in applying address sanitizer
(ASan) [98] to executable. In principle, RetroWrite does not
strive to recover variables whereas binary lifters, particularly,
RetDec, can (imprecisely) recover variables and function
local stacks. This conceptually differentiates RetroWrite from
lifters given that RetroWrite only enables coarse-grained stack
frame-level ASan insertion. At the empirical level, we compare
McSema and RetDec with RetroWrite by inserting ASan
checks into the Juliet test programs. Due to the low function-
ality correctness of RetDec-lifted IR code (see Sec. VI-E),
many RetDec-lifted IR programs are mal-functional; it be-
comes meaningless to benchmark its stack sanitization quality.
Out of 3,497 Juliet test cases containing heap vulnerabilities,
McSema can correctly lifts 2,187 cases. For these cases,

McSema achieves promising heap sanitization accuracy which
is comparable with RetroWrite. Nevertheless, the original pro-
gram stack is not protectable, as McSema uses an emulation
stack in its generated IR code. With further enhancement
on functionality correctness, McSema has great potential to
sanitize executable and detect heap exploitations. In sum, our
study in Appx. A, from conceptual and empirical perspectives,
illustrates that neither binary-only nor lifter-driven solutions
can enable full-fledged sanitization. We also discuss strengths
(e.g., cross-platform support) and weaknesses (e.g., perfor-
mance penalty) of lifter-driven sanitization compared with
RetroWrite in Appx. A.

Appx. B compares lifter-enabled binary diffing with the
state-of-the-art research tool, DeepBinDiff [46], and the
industrial standard tool, BinDiff [2]. The lifter-enabled ap-
proaches exhibit encouraging performance in binary diffing,
which is comparable to that of DeepBinDiff. This indicates
the good potential of lifters for use in security tasks such
as malware clustering and CVE/patch searching [120], [124],
[121]. In addition, Appx. C assesses the quality of decompiled
code, and compares lifter-enabled decompilation with that
of (commercial) decompilers, IDA-Pro and Ghidra. These
(commercial) decompilers generate more structured code than
the lifter-enabled solutions in most settings (see Table XIV),
but the latter exhibit reasonable decompilation quality and
appealing extensibility, and are cost-free.

X. DISCUSSION

Analyzing Binary Code with LLVM: Are We There
Yet? As clarified in Sec. IV, “recompilation” is challenging.
However, the research community and industry have provided
lifters that can generally pass functionality testing and for-
mal verifications [38], [66]. Our study in Sec. VI-E further
shows that emulation-style lifters can generate functionality-
preserving IR code. These findings have laid a solid foundation
to use lifters for code patching, migration, and reuse.

IR lifting, similar with most reverse engineering tasks,
is not decidable. Therefore, people may be pessimistic that
lifted IR code is invariably lower in quality. However, in
daily security tasks, how much of a problem is, for instance,
applying some analysis utilities toward the lifted IR code?
This SoK paper aims to understand the status quo of lifter-
driven static security tasks. We summarize current knowledge
and explicate further efforts required to link low-level security
analysis with the LLVM framework. We also show that lifters
exhibit rather inconsistent support for analysis tasks. Our study
enhances the confidence of using lifters in many security
tasks related to discriminability analysis, decompilation, and
sanitization. While to date one might not expect an “out-of-
the-box” usage of lifters for rigorous static analysis, Appx. E
explores enhancement using Debin.
Fostering Other Security Tasks. In addition to tasks eval-
uated in this paper, we also envision using lifters to foster
other security tasks. For instance, recent works [84] have
studied using lifters in binary-only fuzzing. Given code has
been lifted into LLVM IR, it is also a natural extension



to explore bug detection, security patching, and migration
using many industrial-strength LLVM-driven solutions [88],
[96], [27], [50], [94]. Nonetheless, some of these applications
require the correctness of lifted IR code. While our study in
Sec. VI-E shows encouraging correctness of emulation-style
lifters, this lifting scheme can likely introduce more overhead
given that computations are emulated in LLVM IR.
Future Works. As a future research direction, we envision
proposing “lifter-oriented” static analysis algorithms. For in-
stance, emulation-style lifting (e.g., McSema) uses a global
array to emulate the access of the physical memory stack
in machine code. This puts scalable field-sensitive static
analysis [90] as a basic requirement which supports tracking
contents within each array element separately. We plan to
benchmark and potentially calibrate standard field-sensitive
pointer analysis in analyzing McSema lifted IR.

Emulation-style IR (EIR) can promisingly guarantee the
functional correctness, but lacks expressiveness. High-level IR
(HIR), on the other end of the spectrum, strives to recover
high-level code features, but can generate mal-functional code.
It thus becomes critical to enhance the quality of EIR and HIR,
for which the compiled-IR (CIR) might help. In particular,
Transforming EIR To HIR (EIR → HIR). EIR is conserva-
tively lifted in a (mostly) functionality-correct manner. In-
tuitively, one may explore using a sequence of semantics-
preserving transformations to gradually change a piece of
EIR into HIR, e.g., by finding combinations of certain LLVM
passes w.r.t. objective functions like minimizing distances
between EIR and HIR. However, we point out that this task,
EIR→ HIR, is not fundamentally easier than lifting assembly
into EIR. As clarified in Refinement of Sec. II, well-known
challenges, e.g., variable and type recovery, are required in EIR
→ HIR. In fact, the SecondWrite papers [19], [47] aim to solve
EIR → HIR with (sound) techniques; see further information
about SecondWrite in Sec. XI.
Learning from CIR to Fix HIR (HIR ← CIR). HIR is lifted
in a more expressive manner and is (visually) closer to CIR. To
enhance the functional correctness, one may wonder pinpoint-
ing and fixing mal-functional code snippets in HIR, by learn-
ing from corresponding CIR. Recent advances in binary-to-
source matching with neural models might be inspiring [119].
In fact, the authors tentatively investigated the feasibility of
“HIR ← CIR”; we find that this direction, although look
promising, is much harder than expected. We manually com-
pared some mal-functional HIR with their corresponding CIR.
Line-by-line comparison can easily expose inconsistencies.
Such inconsistencies, however, are primarily due to uncertainty
of reverse engineering, which are not erroneous. Defects in
HIR, e.g., ill-lifted local variables, are stealthy. It is difficult,
even for human experts, to recognize certain wrong code
snippets, let alone machine learning models.

XI. RELATED WORK

Typical applications of binary lifters include optimiza-
tion [19], [47], [115], code reuse [67], [41], and security
analysis [55], [67], [37], [63]. Existing static and dynamic

binary lifters either lift an executable into a standard compiler
IR (LLVM or GCC) or customized IR. SecondWrite [19], [47]
lifts machine code into LLVM IR code and refines it with type
inference and symbolic execution. Their proposed technique is
demonstrated to generate LLVM IR code of high quality and
support code optimization.1 Egalito [115] proposes the new
design of binary layout agnostic IR, which is shown to support
fool-proof recompilation on even complex SPEC programs
with negligible cost. Inception [37] proposes a “lift-and-
merge” process which lifts ARM32 binary code into LLVM
IR, and then merges the lifted IR with LLVM bitcode compiled
from source code to smoothly enable symbolic execution.

BinRec enhances dynamic lifting using symbolic execution
and path merging [18]. Instrew proposes to maintain a code
cache [48], which maps machine instruction addresses to the
already lifted code fragments during dynamic lifting to avoid
repeatedly lifting the same code. LISC [58] automates the
generation of assembly to IR lifting rules by learning from how
compilers translate IR into assembly instructions. Similarly,
Wang et al. [113] propose to learn translation rules for existing
dynamic binary translators and use symbolic execution to
validate the correctness of the learned rules.

[93] studies the difference of using compiled IR, lifted
IR, or assembly code for symbolic execution. Our work has
different focuses with [93]: [93] compares the symbolic engine
of S2E [35], which is specifically designed for lifted LLVM IR
with KLEE [29], a symbolic execution engine designed from
compiled LLVM IR. In contrast, our systematic study takes
one step further by exploring whether analysis facilities in the
LLVM compiler framework can be directly reused to analyze
LLVM IR code lifted by the state-of-the-art binary lifters.
Promising support will, to certain extent, push the community
to the edge of a breakthrough that allowing to leverage full sets
of compiler passes built up over decades to analyze low-level
machine code without reinventing the wheel.

XII. CONCLUSION

We present a study of binary lifters regarding their support
for downstream applications. We set up three tasks used by
many security applications and study different compilation set-
tings. We also compare lifter-enabled approaches and binary-
only solutions over three security tasks. We find that the lifted
LLVM IR code exhibits promising support for discriminability
analysis and C decompilation, but has much worse support for
static analysis. Our findings can provide insights for users and
developers that aim to use and enhance lifters.
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APPENDIX

A. Binary Code Sanitization

Address sanitizer (ASan) [98] inserts sanitizer checks to
detect software defects such as buffer overflow [101]. It
instruments each memory access to validate memory addresses
with sanitizer checks. ASan also uses a runtime library to hook
memory allocation/free and to create poisoned “redzones” for
each allocated memory region to detect memory errors.

Taxonomy of Memory Protection Capability. The LLVM
framework has provided ASan as a standard utility. We en-
able ASan by compiling lifted IR using clang and with
the -fsanitize=address option. In addition, we reuse
RetroWrite [43], a binary-only rewriting framework to insert
sanitizer checks into binary code. RetroWrite leverages Cap-
stone [85] for disassembling. It facilitates relocation symbol
recovery and ASan check insertion. We compare RetroWrite
with McSema and RetDec given their distinct and repre-
sentative code lifting schemes, i.e., emulation-style lifting vs.
high-level lifting (Sec. III). We follow the notation used in the
RetroWrite paper, and report to what extent different memory
regions are protected by ASan in Table XIII. As a binary-only
solution, RetroWrite can redzone heap but does not strive to
recover global or local variables. RetroWrite thus instruments
stack objects at the stack frame granularity, which may miss
bugs when the overflow is contained within the frame [43].
Recall McSema uses emulation-style lifting, which means that
the recovered function local stack no longer corresponds to the
original stack. Hence, we deem its lifted IR does not facilitate
redzoning stack, but protects heap and globals. Our previous
study has shown that RetDec (partially) recovers variables
and program stacks which are seen to be similar with the
clang-generated LLVM IR code. In principle, RetDec-lifted
IR code can enable the securing of stacks and global memory
regions, thereby overcoming the limits of binary-only tools.
Nevertheless, its variable recovery is inaccurate, which means
that its memory protections are not flawless; we use “partial”
in Table XIII to denote this aspect.

Experiments. We use the Juliet test suite that was bench-
marked in the RetroWrite paper, which is a collection of test
programs containing stack and heap memory vulnerabilities.
Each test program has a “good” variant without a vulnerability
and a “bad” variant with a vulnerability (generated by slightly
modifying the “good” variant). Hence, tools can be evaluated
regarding errors reported on the bad variants while not flagging
errors on the good variants.

We report the bug detection rates of ASan-enabled programs
in Table XII, and compare these with the rates reported for
RetroWrite (reusing results in its paper). For each Juliet test
case, we first compare the outputs of the ASan-enabled good
variant with its original good variant using its shipped test
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TABLE XII
VULNERABILITY DETECTION RATES. “FALSE POSITIVES” ARE OMITTED AS THEY ARE ALL ZERO FOR ALL SETTINGS.

clang & ASan RetroWrite McSema & ASan McSema & ASan RetroWrite & ASan
RetDec & ASan(heap vulnerability) (heap vulnerability)

#Functionality Correct Cases 5,914 5,912 6,350 2,187 3,497 692
True Positive 4,489 3,257 2,097 1,862 3,124 0
True Negative 5,914 5,912 6,350 2,187 3,497 692
False Negative 1,382 2,614 4,253 325 355 692
Recall 76.5% 55.5% 33.0% 85.1% 89.3% 0%

TABLE XIII
OVERVIEW OF REDZONE POLICY AS ENABLED BY STANDARD ASAN,
RETROWRITE, AND LIFTED LLVM IR. “PARTIAL” CONSERVATIVELY

DENOTES THAT VARIABLE RECOVERY IS NOT ACCURATE, AND
FUNCTIONALITY MAY BE BROKEN IN THE FIRST PLACE.

Memory Object ASan RetroWrite McSema RetDec
Heap Full Full Partial Partial
Stack Full Lower granularity NA Partial
Global Full NA Partial Partial

inputs; if the outputs of two good variants are equal (see the
second row of Table XII), we then test if ASan checks in the
corresponding bad variant can capture the memory vulnera-
bility. A false positive means that ASan reports to capture the
vulnerability in a good variant whereas false negative means
that ASan misses to capture the vulnerability in a bad variant.
Given that McSema uses emulation-style stacks, we exclude
Juliet test programs containing stack vulnerabilities and report
results derived from the remaining ASan in the 5th column
of Table XII (heap vulnerabilities). Similarly, we also run the
released RetroWrite tool [15] on these heap vulnerability cases
and report the results in the sixth column.
clang-inserted ASan (the second column in Table XII) has

the highest recall rate, and the remaining false negative cases
(1,382) arise because some vulnerabilities in the Juliet dataset
are not designed to benchmark ASan. RetroWrite (the third
column) shows a good recall rate, which is comparable to
that of clang-inserted ASan. More importantly, RetroWrite
and McSema on heap vulnerability cases yield promising and
comparable recall rates (85.1% vs. 89.3%); however, McSema
generates 1,310 lifted IR programs which are mal-functional
(see the second row of Table XII). It thus becomes meaningless
to benchmark ASan over those 1,310 programs. In addition,
our manual study shows that some remaining false negatives
are due to bugs are not triggerable in 64-bit PIC code. Note
that RetroWrite can only process 64-bit PIC code whereas
McSema is a versatile cross-platform binary lifter that can
process binary code on 32-bit/64-bit x86, ARM, and SPARC
architectures. In sum, given that many heap-related vulnerabil-
ities, such as use-after-free bugs, remain unsolved [12], [71],
[114], McSema has appealing utility, as on the correctly-lifted
IR programs, it shows heap-sanitization performance that is
comparable to that of RetroWrite, the state-of-the-art binary-
only solution.

In addition, McSema’s emulation-style lifting can gener-
ate slower code than binary-only solutions. In all, McSema
carries large runtime performance overhead as computations

are emulated in its lifted IR code. Nonetheless, for Juliet
test cases, we report the extra runtime cost is negligible. Our
experiments show that McSema +ASan introduces about 40%
extra slowdown whereas RetroWrite +ASan is about 37%.
This is reasonable: while Juliet test cases contain compre-
hensive sets of vulnerabilities, these test programs are not so
complex. Nevertheless, we note that complex executable may
impose major challenge for both McSema and RetroWrite:
the emulation-style lifting of McSema can likely introduce
notable performance penalty, whereas the “re-assemable dis-
assembling” heuristics [110] employed by RetroWrite might
be broken (i.e., generating mal-functional code).

Our manual study confirms that in RetDec-lifted IR,
ASan checks are inserted in a generally comprehensive way,
similar to those in clang-generated IR. However, almost
all LLVM IR lifted by RetDec fails to retain functional
correctness. After excluding Juliet test programs that have
erroneous outputs, we have 692 remaining programs. We
report that vulnerabilities in all the “bad” variants of these
692 programs are missed, resulting in 692 false negatives in
Table XII. This evaluation reveals the lack of binary lifters
capable of delivering full-fledged sanitization support. Heap
memory regions can be protected based on McSema-lifted IR,
which exhibits accuracy comparable to that of RetroWrite.
In contrast, the sanitization of stacks is dependent on the
functionality correctness of RetDec-lifted IR code, which
requires major improvements.

TABLE XV
DEEPBINDIFF BINARY DIFFING COMPARISON RESULTS ON POJ-104

RESULTS OVER DIFFERENT SETTINGS.

BinDiff DeepBinDiff RetDec
gcc -O0 70.2% 66.3% 77.7%
gcc -O3 54.8% 68.3% 80.1%
clang -O0 57.7% 73.1% 81.0%
clang -O3 59.6% 66.3% 78.2%

B. Binary Diffing Comparison
We also compare our binary similarity analysis results

with those generated by the state-of-the-art binary diffing
tool, DeepBinDiff [46], and by the industrial standard
binary diffing tool, BinDiff [2]. The released DeepBinDiff
implementation [45] is highly convenient to use, as it does
not require a pre-trained model. Given two executable files,
it launches an on-the-fly training process and conducts basic
block level matching.

Recall our discriminability model used in Sec. VI-C is
on the whole program-level, whereas the DeepBinDiff



TABLE XIV
AVERAGE STRUCTUREDNESS AND LOC PER USER-DEFINED FUNCTION OF SPEC PROGRAMS.

Tools clang McSema RetDec BinRec IDA-Pro Ghidra

gcc -O0 #goto NA 15479.3 1661.3 6661.4(12978) 856.9 332.3
LOC NA 282.7 142.3 245824.2(478924.3) 68.4 60.0

gcc -O3 #goto NA 8023.2 3766.4 1820(20078.2) 5304.7 2554.9
LOC NA 595.1 374.3 61677(680419.3) 122.1 90.3

clang -O0 #goto 3188.4 6026.5 1709.6 6344.1(27894.4) 865.8 653.8
LOC 44.3 247.6 168.7 70947.1(311947.6) 65.2 61.4

clang -O3 #goto 6589.9 9367.0 8971.5 1635(3448.7) 4016.9 2211.2
LOC 112.9 554.6 276.6 36256.7(76476.1) 109.8 85.9

implementation [45] delivers basic block-level matching. Bin-
Diff also performs a program-wide comparison. To launch
a fair comparison, we design the following task: given a
pair of POJ-104 programs p1 and p2 written to solve the
same programming assignment, a program p3 for an irrelevant
assignment is randomly selected. We then use DeepBinDiff
to compare p1 with p2 and p3, respectively. Let the number
of matched basic blocks be bb1,2 and bb1,3, we deem a
correct match where bb1,2 ≥ bb1,3, and vice versa. For our
discriminability model (the RetDec column) and BinDiff, we
check whether the program-wise similarity between p1 and
p2 is higher than that of p1 and p3. The accuracy scores are
reported in Table XV. We launch this evaluation on the test
split of POJ-104, whereas the discriminability model is trained
using RetDec-lifted IR code over the POJ-104 training split.
We compute and report the accuracy scores in Table XV.
RetDec and DeepBinDiff outperform BinDiff for most

settings, and RetDec manifests relatively higher accuracy
compared with DeepBinDiff. We interpret the results as
reasonable: one needs to train our discriminability model
whereas the released implementation of DeepBinDiff per-
forms on-the-fly training over a pair of binary code. The
accuracy of DeepBinDiff can be further improved given
that a pre-trained model is used in the DeepBinDiff paper.
We also note that most binary diffing works [46], [44], [92]
explore a potentially easier task: the comparison of a pair of
executables compiled from the same program using different
compilation settings or different versions. In contrast, the
experiment we perform follows the setting in [26], [82] to
compare executables of two programs implementing the same
programming assignment.

We conclude that DeepBinDiff is generally suitable
for daily security analysis and binary diffing tasks, given
its promising performance [46] and convenience. For heavy-
weight program-wise binary diffing, another presumably
promising option is to employ binary lifters and LLVM-level
representation learning tools like ncc.

C. Decompilation

We measure the decompilation quality of (commercial)
decompilers and compare the results with our findings in
Sec. VI-D. We use IDA-Pro and Ghidra, two popular commer-
cial and free decompilers, to decompile executables into source
code. Table XIV reports the evaluation results. Note that
since our cross-compiler and cross-optimization evaluation in

Sec. VIII has discussed and cross-compared different lifters in
supporting decompilation, this section only compares RetDec
with two (commercial) binary decompilers.

As expected, both IDA-Pro and Ghidra perform very well
in terms of C/C++ decompilation. Although in the gcc -O3
setting, RetDec has less #goto than IDA-Pro, the C code
decompiled by IDA-Pro/Ghidra manifests generally better
structuredness for most settings. This is reasonable; IDA-Pro
is a mature commercial product, and Ghidra is developed
by NSA with vast resources. The engineering quality of the
RetDec decompiler has been reported to be slightly lower
(containing more bugs) than that of IDA-Pro and Ghidra [77].
Table XIV and our study in Sec. VI-D show that lifted IR and
compiled IR exhibit comparable support for decompilation.
Studies in this section show that LLVM IR-to-C decompilation
requires further improvement. Nevertheless, the LLVM IR-to-
C approach is a free and highly extensible solution based on the
LLVM ecosystem. In contrast, it appears that the customized
IR of Ghidra would be difficult (or impossible) to modify [5].

TABLE XVI
BINARY LIFTING RESULTS FOR THE ARM64 SETTING. WE PRESENT

TOTAL TEST CASES AND THE NUMBER OF FAILED LIFTING CASES.

Dataset SVF POJ-104 SPEC
Total test cases 84 49,058 9
RetDec 0 0 0
McSema 0 28 0

TABLE XVII
BINARY LIFTING RESULTS FOR THE CROSS-COMPILER AND OPTIMIZATION

SETTING. WE PRESENT TOTAL TEST CASES AND FAILED LIFTING CASES.

Dataset POJ-104 SPEC

gcc -O3

Total test cases 49,275 9
RetDec 205 2
McSema 35 3
mctoll 28,185 9
BinRec 18.651 4

gcc -O0

Total test cases 49,275 9
RetDec 60 1
McSema 181 0
mctoll 33,283 9
BinRec 20,741 3

clang -O3

Total test cases 49,154 9
RetDec 23 1
McSema 33 4
mctoll 34,283 9
BinRec 15,079 5



D. Binary Lifting

Table XVI reports binary lifting results in accordance with
the cross-platform evaluation in Sec. VII. McSema has a
few (less than 1%) lifting failures in the POJ-104 test cases.
Similarly, Table XVII reports the binary lifting results in
accordance with the cross-compiler/optimization evaluation in
Sec. VIII. Again, mctoll cannot process executable compiled
from C++ code, and therefore, it fails to lift a large number of
POJ-104 cases. It also fails to lift all SPEC test programs.
We have reported our findings to the mctoll developers.
RetDec and McSema perform generally well by making
fewer lifting errors.

Note that when launching cross-compiler and cross-
optimization evaluation, we use gcc (ver. 7.5.0) whereas
in the BinRec paper, gcc (ver. 4.8.4) is evaluated. We
find a number of opcodes that are not supported by the
current implementation of BinRec, which explains the higher
lifting failures of BinRec for the gcc cases. In comparison,
BinRec has only 9,668 failures for clang (-O0) compiled
binary code (Table V). Also, when lifting POJ-104 programs,
we set a shorter timeout threshold (2 minutes), which induces
more cases that cannot be finished within this threshold.
Nevertheless, our findings in Sec. VIII should not be affected
given that we still successfully lifted over 20K executables for
each compilation setting.

TABLE XVIII
ENHANCING POINTER ANALYSIS RESULTS OF RETDEC .

MustAlias MayAlias NoAlias
RetDec 0.0% 0.0% 88.9%

RetDec + Debin 0.0% 0.0% 88.9%
RetDec + Debin+ 57.1% 100.0% 94.4%
RetDec + debug info 71.4% 100% 94.4%
RetDec + manual fix 100.0% 100.0% 100.0%

E. Pointer Analysis Enhancement

Overall, pointer analysis has the lowest accuracy of the three
downstream applications evaluated in Sec. VI and Sec. VII,

As reported in Table VII, variable types primarily contribute
to the correctness of pointer analysis. Hence at this step, we
first use binary code with debug information available (using
-g option when compiling with clang) and explore whether
pointer analysis results can be improved. The fifth row of Ta-
ble XVIII reports the evaluation results. RetDec leverages the
debug information to refine the recovered variables, variable
types, and function prototypes. This can effectively promote
the pointer analysis results. On the other hand, our manual

which reveals a considerable gap between the performance
of compiled IR code and lifted IR code. In contrast, binary
lifters, particularly RetDec and mctoll, exhibit satisfactory
discriminability analysis and C decompilation accuracy, which
is close to compiled IR code. This section explores practical
strategies to enhance the accuracy of pointer analysis. We use
the 16 fixable cases identified in the “manual fix” conducted in
Sec. VI-B (see Table VII) and focus on enhancing RetDec,
as it outperforms other lifters.
comparison between the fifth row and the last row (manual
fix) shows that RetDec still makes considerable errors in
recognizing global variables (even with the presence of debug
information and symbol tables). Considering the following C
statement and its corresponding lifted IR statement:

int *p = &x; // p and x are both global var.
@p = i32* inttoptr (i32 134520892 to i32*)

where 134520892 is the memory address of x in assembly.
Address 134520892 was not symbolized into a LLVM local
variable representing x. We confirm that all global pointer
initialization (following the above pattern) are ill-handled by
RetDec, incurring errors in the fifth row of Table XVIII. We
have reported this bug to the RetDec developers.

Debug and symbol information in stripped executable can
be recovered by Debin [59]. Debin recognizes variables
with a randomized tree classifier and employs a probabilistic
graphical model to make joint predictions. We reuse the author
released Debin pre-trained on x86 executables to predict
debug and symbol information on stripped executable. We then
re-run SVF on the enhanced binary code. Unfortunately, as
shown in the third row of Table XVIII, Debin can barely
enhance pointer analysis (we have excluded false positives).
We find that for the SVF test cases, Debin is unable to
correctly recover function prototypes. We further augment
the output of Debin, by manually fixing all the function
argument types and re-running SVF. As a result, the local
variables and their types are recovered by Debin, while
function prototypes are recovered with our manual efforts. The
fourth row (Debin+) reports the evaluation results. Debin
shows promising accuracy in recovering local variables and
types; our manual inspection shows that the LLVM IR code
enhanced by Debin is close to directly lifting binary code
with debug information available. Overall, we interpret that
study in this section sheds light on practical solutions to
enhance the quality of lifted IR code, by first using (and
augmenting) debug information recovery tools.
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