
How Far We Have Come: Testing Decompilation Correctness of
C Decompilers

Zhibo Liu
The Hong Kong University of Science and Technology

Hong Kong, China
zliudc@connect.ust.hk

Shuai Wang∗

The Hong Kong University of Science and Technology
Hong Kong, China
shuaiw@cse.ust.hk

ABSTRACT

A C decompiler converts an executable (the output from a C com-

piler) into source code. The recovered C source code, once re-

compiled, will produce an executable with the same functionality

as the original executable. With over twenty years of development,

C decompilers have been widely used in production to support

reverse engineering applications, including legacy software migra-

tion, security retrofitting, software comprehension, and to act as

the first step in launching adversarial software exploitations. As the

paramount component and the trust base in numerous cybersecurity

tasks, C decompilers have enabled the analysis of malware, ran-

somware, and promoted cybersecurity professionals’ understanding

of vulnerabilities in real-world systems.

In contrast to this flourishing market, our observation is that

in academia, outputs of C decompilers (i.e., recovered C source

code) are still not extensively used. Instead, the intermediate rep-

resentations are often more desired for usage when developing

applications such as binary security retrofitting. We acknowledge

that such conservative approaches in academia are a result of wide-

spread and pessimistic views on the decompilation correctness.

However, in conventional software engineering and security re-

search, how much of a problem is, for instance, reusing a piece of

simple legacy code by taking the output of modern C decompilers?

In this work, we test decompilation correctness to present an

up-to-date understanding regarding modern C decompilers. We

detected a total of 1,423 inputs that can trigger decompilation errors

from four popular decompilers, and with extensive manual effort,

we identified 13 bugs in two open-source decompilers. Our findings

show that the overly pessimistic view of decompilation correct-

ness leads researchers to underestimate the potential of modern

decompilers; the state-of-the-art decompilers certainly care about

the functional correctness, and they are making promising progress.

However, some tasks that have been studied for years in academia,

such as type inference and optimization, still impede C decompilers

from generating quality outputs more than is reflected in the litera-

ture. These issues rarely receive enough attention and can lead to

great confusion that misleads users.
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1 INTRODUCTION

A software decompiler recovers program source code by examining

and translating executable files. C decompilers are among the most

fundamental reverse engineering tools for software re-engineering

missions [18, 35, 63], and they have also laid a solid foundation

for many cybersecurity applications, including malware analysis

and off-the-shelf software security hardening [22, 25, 26]. To date,

many C decompilers exist on the market, including commercial

tools that cost several thousands of US dollars and also free versions

actively maintained by the open-source community. Remarkable

commercial decompilers on the market, including IDA-Pro [34] and

JEB3 [52], are łmust-havež gadgets for reverse engineers and secu-

rity analysts despite their high prices. Free decompilers maintained

by the open-source community, such as RetDec [38] and Radare2 [2],

have also started to challenge the dominance of their commercial

competitors. Recently, the National Security Agency (NSA) has also

released its decompiler framework, Ghidra [48, 50], with the aim

of łtraining the next generation of cybersecurity defenders.ž

Despite being the core component of most reverse engineering

tasks in industry, our observation is that C decompilers, partic-

ularly their final-stage outputs (i.e., the recovered C code), are

not extensively used in academia. While C decompilers are fre-

quently employed in academia as the basis of analyzing legacy

software, such as malware clustering, firmware analysis, and secu-

rity retrofitting [18, 22, 25, 26, 35, 63, 67], the recovered intermediate

information is usually preferred in conducting research rather than

decompiled C code. For instance, to fix a security flaw in an exe-

cutable, the convention is to perform binary patching and to edit

the executable file after reverse engineering program layouts and

locating the issue [27], even though the straightforward way is to

decompile the executable, instrument the decompiled code, and

recompile the hardened code into a new executable file.

We interpret such conservative approaches as being due to the

widespread and potentially pessimistic stance on decompiled C

475

https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370


ISSTA ’20, July 18–22, 2020, Virtual Event, USA Zhibo Liu and Shuai Wang

code; one might expect that the decompiled C code is primar-

ily designed as presentable high-level descriptions of input exe-

cutables, instead of being directly used as a conventional C pro-

gram. However, recent several years of progressive development on

łfunctionality-preservingž disassembling and C style control struc-

ture recovery [17, 31, 47, 64, 65, 67] illustrates that functionality-

preserving decompilation of unobfuscated and not-highly-optimized

executable is primarily a matter of engineering effort (although

a certain amount of readability is sacrificed). Indeed, some popu-

lar reverse engineering frameworks are tentatively implementing

such techniques to guarantee decompilation correctness in the

first place [28, 55]. Overall, we argue that the research community

lacks to incorporate an up-to-date understanding of de facto C de-

compilers and the correctness of their outputs, which may impede

reaching the full potential of modern C decompilers in conducting

research. Thus, this work aims to study C decompilers in a realistic

setting and to more clearly delineate the decompilation correctness

of modern C decompilers.

In this research, we perform systematic testing to reflect the

decompilation correctness of C decompilers, which is certainly not

fully understood and can lead to a controversial view between in-

dustry hackers and academic researchers. In particular, we target

x86 to C decompilers whose inputs are x86 executable files, with

such decompilation being deemed as highly challenging and popu-

lar. We aim to answer the following important research questions:

RQ1: how difficult is it to recompile the outputs of modern C decom-

pilers? ; RQ2: what are the characteristics of typical decompilation

defects? ; and RQ3: what insights can we deduce from analyzing the

decompilation defects? Our findings can be adopted to promote the

development of decompilers and to serve as guidelines for users to

avoid potential pitfalls.

This work is the first to conduct a comprehensive study targeting

C decompilers. We employ Equivalent Modulo Inputs (EMI) testing,

a random testing technique that has achieved major success in

revealing compiler bugs, in this new setting [19, 40, 60]. We also

organize a group of security analysts to carry out extensive manual

inspection on findings yielded by EMI testing (about 530 man-

hours in total). From a total of 10,707 programs used for this study,

we found 1,423 programs exposing decompilation errors from four

widely-used decompilers, two of which (IDA-Pro [34] and JEB3 [52])

are popular commercial tools, and the other two (RetDec [38] and

Radare2/Ghidra [50]) are actively developed and maintained by the

community and by NSA. Manual inspection on the open-source

decompilers (RetDec and Radare2/Ghidra) detects 13 buggy code

fragments that incur the decompilation errors we found. In sum,

this research makes the following contributions:

• To study C decompilers in a realistic setting and to delineate

their up-to-date capabilities, we introduce and advocate a

new focus, conducting comprehensive and large-scale testing

on C decompilers. Findings obtained in this study will guide

future research that aims to use and improve decompilers.

• We reuse well-established compiler testing techniques in

this new setting and form a productive workflow to reveal

potential decompiler bugs. From two de facto commercial

decompilers and two popular free decompilers, we success-

fully found 1,423 programs causing decompilation errors.
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Figure 1: The workflow of C decompilers. We use different

colors to differentiate decompilation stages. The key focus

is the middle stage (modules in orange ) where variables,

types, and high-level control structures are recovered.

We have reported all the findings to the decompiler devel-

opers, and by the time of writing, typical defects have been

promptly confirmed by commercial decompiler vendors and

to be fixed. We manually confirmed 13 bugs which caused

all errors found in outputs of free decompilers.

• We made various observations and obtained inspiring find-

ings regarding modern decompilers. We show that the overly

pessimistic stance on the recompilability leads researchers

to underestimate the potential of C decompilers; modern

decompilers are making encouraging progress to enhance

quality of their outputs. In contrast, subtler issues that lead

to erroneous and unreadable decompiled outputs, including

the type inference failure and over optimization, frequently

exist and do not receive enough attention.

• We have released all the findings and our tool for decom-

piler testing to facilitate further research [8, 9]. Our artifact

has passed the ISSTA Artifact Evaluation check and been

awarded the Functional badge. Other decompilers can be

tested with our tool following the same procedure.

2 BACKGROUND OF RESEARCH

2.1 Pipeline of C Decompilers

Fig. 1 depicts a high-level overview of modern C decompilers. Mul-

tiple stages are involved, and the output of one stage is the input

of the next stage.

Front End: Disassembling. Input executables will first be fed into

the disassembling module to translate binary code into assembly

instructions. The data sections within each executable will also be

identified for further usage. Existing research of disassembling has

been shown to work very well in practice and the proposedmethods

can smoothly disassemble large-size binary executables [13, 39, 65].

Nevertheless, the disassembled outputs (i.e., assembly code) are

seldom used for analysis; a modern decompiler will first lift assem-

bly instructions into an intermediate representation (IR), which is

deemed as more analysis-friendly [16, 59, 61].

Middle Stage: High-Level Program Recovery. The ultimate goal of

a C decompiler is to convert input executable into high-level source

code. Therefore, given the lifted IR code, the central focus is to

recover variables, types, and high-level program control flow from

low-level IR code. To recover program variables, some tools already

proposed and implemented needed static analysis and inference

techniques [10, 12, 13, 30, 54]. To recover variable types, constraint-

based type inference systems are typically formulated [42, 49].
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To recover C-style control structures, modern decompilers imple-

ment a set of structure templates and search to determine whether

an IR code region matches the predefined patterns. Some advanced

techniques enable an iterative refinement to polish the recovered

structure. To date, techniques have been designed to guarantee

the structure recovery correctness and also to improve readabil-

ity [17, 67]. In addition, modern decompilers usually design opti-

mizations to polish the lifted IR code, including dead code elim-

ination and untiling [17, 21, 38]. Also, reverse engineering of C

executable files might encounter łchicken and eggž problems (e.g.,

data flow analysis relies on precise output of control flow analysis,

and vice versa). Indeed, modules within the middle stage can be

invoked back and forth for iterations; the output of one module is

used to promote the analysis of other modules [38].

Back End: Code Generation. The final stage translates IR state-

ments into C statements and outputs source code. As the output of

the middle stage, the IR code is already close to being source code.

Translations are mostly mundane (but could still contain bugs, as

will show in Sec. 5.1) by concretizing code generation templates.

2.2 Equivalence Modulo Inputs (EMI) Testing

We briefly introduce a well-established testing technique that has

achieved prominent success in testing compilers, the Equivalence

Modulo Inputs (EMI) testing [40]. Soon, we will show that EMI

testing can be used to test decompilers in a highly effective manner.

Given a program p and its legitimate input space as dom(p), the

output of p for an input i ∈ dom(p) is denoted as [[p]](i). Therefore,

two programsp andq are defined as equivalent modulo inputs (EMI)

in case ∀i ∈ I [[p]](i) = [[q]](i)where I ⊆ dom(p) ∩ dom(q). Here, q is

referred as the EMI variants of p. The main benefit of EMI testing

is the functionality-preservation of q w.r.t. inputs i ∈ I ; therefore,

this method does not require a reference implementation and it

provides an explicit testing oracle such that any EMI variantsqmust

behave identically compared with p. The EMI equivalent property

alleviates the notion of łprogram equivalence.ž It consequently

provides a viable way to produce programs for testing compilers.

To extend the above formulation in testing decompilers, we start by

generating q, which is a mutated program of p (mutation strategies

are introduced in the next paragraph). Then, we decompile the

executable file compiled from q and generate the decompiled source

code q∗. Obviously, q∗ is an EMI variant of p and we use the above

oracle for testing.

The first EMI implementation [40] generates a mutated program

q by profilingp with inputs i ∈ I and deleting or inserting additional

statements within uncovered code blocks w.r.t. to any input i ∈ I .

Since any modified code region in q is not executed w.r.t. I , q is

naturally an EMI variant of p. Some improvements insert code

into the live code region; the inserted code is guarded by opaque

predicates that are always evaluated as false during runtime [60].

Some statistical methods are also adopted to optimize the selection

of statements for mutations [41]. We employ all three EMI mutation

strategies in our new setting (see Sec. 4.1).

3 MOTIVATION

In this section, we show the research topic is central and timely,

by shedding light on potential mismatches between traditional

conservative stance of using decompiled C code and the progres-

sive development of decompilation techniques. We also discuss the

pitfalls of leveraging IRs for binary code analysis to advocate the

development of decompilation techniques.

3.1 Research Using C Decompilers

C decompilers are one of the most critical reverse engineering

tools that enable various cybersecurity and software re-engineering

missions. To date, reusing decompiled x86 and ARM binary code has

been a widespread practice, and industry hackers have successfully

decompiled and reused complex real-world legacy software, such

as video games [1, 3] and complex firmware [4].

In contrast, while decompilers are also extensively used in academia

(searching a popular decompiler, łIDA Prož, in Google Scholar re-

turns 1,370 records since 2015), reusing decompiled C code is not a

common approach. Overall, the major application scope of C de-

compilers in academia includes code comprehension (e.g., similarity

analysis) [18, 25, 26], code reuse [27, 37], and various security hard-

ening and vulnerability detection applications [22, 32, 35, 37, 63].

However, our observation is that instead of directly taking final-

stage decompiled outputs, intermediate information or representa-

tions are usually extracted and leveraged in the conducted research.

For instance, instead of directly reusing the decompiled C programs,

binary code reuse tasks would be launched with executable patch-

ing or replication after reflecting the code layouts and fragments

with decompilers [27]. Note that binary patching and replication

are usually error-prone and incur a very high cost.

We attribute this conservative and potentially mismatched usage

of decompilers to the generally pessimistic views of the decompiled

programs: it is traditionally believed that the recovered C code

cannot be used for recompilation (unlike conventional C code).

Nevertheless, within recent years, promising lines of research have

proposed fool-proof techniques for binary disassembling and de-

compilation [17, 31, 64ś67]. As a result, functionality-preserving

disassembling of non-obfuscated and not-highly-optimized binary

code becomes practical, and it could be accurate to assume recover-

ing functionality-preserving C code becomes a matter of engineer-

ing effort, although a certain amount of readability of the generated

code is sacrificed, e.g., due to the usage of inline assembly or spring-

board [29, 31]. Indeed, some popular binary analysis frameworks

have implemented the proposed techniques [55]: the decompiled

output can be smoothly recompiled into an executable that pre-

serves the original semantics [28]. Overall, existing research has

shown a practical need to advocate the functionality-preserving łre-

compilabilityž as a critical design goal of C decompilers. Given the

encouraging development of functionality-preserving reverse engi-

neering, we see this as the perfect time to launch systematic testing

of C decompilers, as a means to demystify their full capability.

3.2 Analysis and Instrumentation with IR

At present, a decompiler framework often provides an IR lifted

from the assembly instructions in support of static analysis and

instrumentation. Given the widespread adoption of decompiler

IRs for analysis and instrumentation, we argue that using an IR,

although not obvious, does not primarily eliminate the need for

promoting decompilation. In addition to the self-evident reason
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LLVM IR derived from the sample C code LLVM IR lifted from binary code

LLVM IR lifted from binary code (cont’d)

Sample C code

t42 = load i32** @llvm_fp

t43 = getelementptr i32* %42  

ret i8 t45

...

%r0 = alloca i32

%r1 = alloca i32

...  

call 840c(i32 t51, i32 t52) 

define i32 @bar(i8 par1, i32 par2) {  

t1 = alloca i8               

t2 = alloca i32                

store i8 par1, i8* t1           

store i32 par2, i32* t2           

t3 = load i8* t1  

t4 = sext i8 t3 to i32

t5 = icmp i32 t4, 40

br i1 t5, label1, label3     

label1:                          

...

br label3

label3:                          

t13 = load i32 t2        

ret i32 t13                  

}

                                                            

define i32 @main() {          

call i32 @bar(i8 30, i32 60)  

... 

int bar(char a, int b) { 

if (a > 40) 

b = b + 10; 

else  

b = b - 10; 

return b; 

}

int main() {

int a = bar(30, 60); 

return a;

} 

t1 = alloca i32

 t2 = alloca i32

store i32 r0, i32* t1           

store i32 r1, i32* t2

//store par1 on stack with offset -5

t8 = load i32* t1  

t10 = load i32** @llvm_fp

t11 = getelementptr i32* t10, -5

store i32 t8, i32* t11

//store par2 on stack with offset -12

t12 = load i32* t2

t13 = load i32** @llvm_fp

t14 = getelementptr i32* t13, -12

store i32 t12, i32* t14

...

br i1 t18, label1, label3

label1:  

...

br label3

label3:

local vars vs.
global mem stack

type mismatch

lack of function
boundary info

Figure 2: Comparison between LLVM IR generated from sample C code with IR lifted from binary code compiled from the C

code. The sample C code is presented on the lower right corner. LLVM IR code is simplified due to the limited space and the

main function is backgrounded with grey for better readability.

that many infrastructures and algorithms (e.g., a symbolic execution

engine) need to be reimplemented when analyzing customized IRs,

performing static analysis and instrumentation regarding a unified

IR, e.g., LLVM IR, suffers from similar challenges in variable and

type recovery as that encountered in decompilation.

While lifting assembly code into LLVM IR is mostly mundane,

the transformed IR lacks high-level expressiveness, and this absence

can impede many standard dataflow analyses and symbolic reason-

ing facilities [10]. In Fig. 2, we study and present a simple example,

where a toy C program was compiled into an LLVM IR and further

compiled into an executable. We then disassembled the executable

into assembly instructions and transformed the instructions into

LLVM IR statements. Comparing the two pieces of IR code, we find

that much of the high-level program information is missing in IR

derived from low-level code, which, as elaborated in [10, 30], will

hinder the adoption of many source code-level static analyses due

to the missing of program high-level information. Clearly, using IR

does not primarily eliminate the need for promoting decompilation

techniques, since they face the same hurdle regarding type, (local)

variable, and control structure recovery.1 In other words, reverse

engineering of high-level data representations are unavoidable to

facilitate the same amount of analysis expressiveness (although re-

covery of high-level control structures may not always be needed).

1We are certainly aware of some LLVM IR lifters developed by the reverse engineering
community [15, 46, 62]. However, experimental tests show that they suffer from similar
issues (e.g., lack of local variable recovery), and to date, such lifters are not commonly
adopted in academia. In fact, researchers prefer to implement their own in-house IR
lifter for such tasks [22].

Source 

Code p

EMI Mutated 

Source Code q
Executable eq

Decompiled

Output q’

Executable e’q
Instrumented 

Source Code

Execute

Decompilation

Failure?

Recompilation 

Failure?

Extracted 

Function
Output’

Output

Decompilation

Defects?

Compile into executable ep & execute

?

Figure 3: Workflow of our study. Workflow elements (p, eq ,

e ′q , etc.) are consistent with description in Alg. 1.

Overall, we interpret that analyzing IR code does not alleviate

need for decompilation, but, instead, could fall into a trap consisting

of a łmultilingualž scenario where we have to mediate source code-

level analysis facilities with low-level code and their incompatible

memory models. In summary, our observation again advocates the

understanding and development of modern decompilers, which

would overcome many common challenges in the first place and

enable a seamless integration of source code-level analysis facilities

with low-level code study.

4 METHODOLOGY AND STUDY SETUP

Fig. 3 depicts the workflow of this empirical study. We start by gen-

erating random C programs with a popular generator for compiler

testing, Csmith [68]. For each input C code p generated by Csmith,
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we mutate p with the EMI technique (see Sec. 2.2), and compile the

mutated program q (i.e., an EMI variant) into executable eq . The

decompiler will take eq as the input and produce the decompiled

output, another piece of C code. Given that the decompiled C code

is not directly recompilable (for the explanation, see Sec. 4.3), we

extract the function from the decompiled output (we configure

Csmith to generate C code with one function besides main) and

use this function to replace its corresponding code chunk in q to

generate an instrumented q∗. Doing so gives us another piece of

executable file e∗ compiled from q∗. To check decompilation cor-

rectness, we compare the execution outputs of e (compiled from the

input C code) and e∗. If a deviant output is identified, we manually

inspect and compare p and q∗ in depth (see Sec. 4.2) and aggregate

the harvested information to deduce empirical findings.

Study Scope. As depicted in Fig. 3, we capture the following kinds

of issues in this study:

• Decompilation failures represent errors or crashes thrown

by decompilers. This usually indicates a simple decoding bug

or ill-format input executables.

• Recompilation failures represent errors yielded by the

compiler when we are recompiling decompiled outputs. This

indicates bugs or implementation limits in decompilers.

• Decompilation defects represent deviant results when we

execute and compare recompiled executable and its reference

input. Deviant outputs imply the semantics of the input

executable is broken in the decompiled output, which is

likely derived from a decompiler bug.

We aim to reveal and understand various logic bugs or implemen-

tation pitfalls that result in incorrect decompiled C code. Therefore,

the recompilation failures and decompilation defects are the major

focus (see Table 3 for the findings). While our main focus is not

decompilation failures since fuzz testing tools could likely find such

issues during in-house development, decompilation failures are still

recorded and reported in Table 3.

The prerequisite for binary decompilation is disassembling; de-

compilation is performed to lift the disassembled output into higher-

level representations (Sec. 2.1). As mentioned above, while precise

disassembling is known to be hard in principle, current algorithms

have been shown to work very well in practice and to perform

fool-proof disassembling of real-world applications [31, 47, 64, 65].

Therefore, in this study, we assume that binary disassembling is

reliable; we focus on analyzing defects in decompilation procedures,

where existing research has rarely explored.

We are not testing extreme cases to stress decompilers. Decom-

pilers are known to be error-prone for highly optimized and obfus-

cated code. Indeed, obfuscated and highly-optimized code are not

considered by prior łfunctionality-preservingž disassembling and

decompilation research as well [11, 17, 31, 64, 65, 67]. Instead, we

aim to understand towhat extentmodern decompilers are revamped

with respect to conventional C programs and provide practical and

inspiring insights for decompiler developers and users. We limit

our study to unobfuscated and unoptimized binaries compiled on

x86 platforms (see discussions regarding other settings in Sec. 6).

Algorithm 1 Decompiler Testing.

1: function IsDeviant(p, q)
2: ep ← Compile(p)
3: eq ← Compile(q)
4: q′ ← Decompile(eq )
5: e ′q ← Compile(Instrument(q, q′))

▷ Implementation of Instrument is given in Sec. 4.3
6: if Execute_and_compare(ep , e

′
q ) == false then

7: return true
8: else
9: return f alse

10: function Testing(P)
▷ P : a set of C programs generated by Csmith

11: S ← ∅

12: for each pk in P do
13: if IsDeviant(pk , pk ) == true then
14: add (pk , pk ) in S

15: continue
16: qk ← pk
17: for 1 ... MAX_ITER do
18: q∗

k
← Mutate(qk )

19: if IsDeviant(pk , q
∗
k
) == true then

20: add (pk , q
∗
k
) in S

21: if Rand(0, 1) < A(qk → q∗
k
, pk ) then ▷ Formulation of

A(qk → q∗
k
, pk ) can be found in [8].

22: qk ← q∗
k

23: return S

4.1 Equivalence Modulo Inputs (EMI) Testing

As mentioned above, in this research, we reuse a well-developed

compiler testing technique named EMI testing [19, 40, 60]. Recall

during decompilation (Sec. 2.1), modern decompilers perform data

flow and control flow analyses and transformations, which are

conceptually comparable to compiler passes. Therefore, we envision

that the full-scale mutations enabled by the EMI technique can

adequately expose decompiler defects. Our study confirms this

intuition: EMI testing is highly effective in this new setting (for

details, see our findings in Sec. 5).

Alg. 1 specifies the workflow of the EMI testing. Function Test-

ing is the main entry point of our algorithm, and IsDeviant per-

forms the compilation, instrumentation, and comparison to find

deviant outputs of two given programs. In particular, IsDeviant

compiles input programsp andq into two executable files, ep and eq ,

respectively; then, it decompiles eq into another piece of programq′

(line 4). We then instrument q′ to generate a recompilable program

(for the implementation of Instrument, see Sec. 4.3) and further

compile the code into executable e ′q (line 5). We then execute these

two executable files and compare the execution output (line 6). Note

that a program generated by Csmith does not require user-provided

input; it performs random computations and returns a checksum

of its global variables. Therefore, we directly execute programs and

compare their outputs, the checksum of global variables.

The input of Testing is a set of arbitrary C programs generated

by Csmith, and this function iterates each C program pk for the

testing (line 12ś22). Before performing the EMI mutation, we first

use IsDeviant to check the recompilation correctness of the seed

program pk (line 13), and in case a deviant output is found, we

record this case (line 14ś15) and move to the next program pk+1.

For each seed program pk , we iterate the EMI mutation for

MAX_ITER iterations (MAX_ITER is set as 30 in the implemen-

tation). At each iteration, we generate a new variant q∗
k
given the
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current variant qk as the input (line 18). Mutate subsumes muta-

tions of both live code and dead code regions [40, 60]; we identify

the live code region of pk by executing it and recording the cov-

ered statements. While the mutation of dead code regions is mostly

straightforward, being performed by inserting and removing un-

reachable statements, the mutation of live code regions is slightly

trickier. Following existing research on mutating live code [60], we

insert a set of opaque predicates (we implemented all three opaque

predicate schemes proposed in [60]) into the live code region for

mutation. When program pairs of deviant outputs are found, we

add the pairs into S (line 20).

Additionally, instead of the blind mutation strategy (i.e., ran-

domly selecting some statements for mutation) proposed in the

first EMI paper [40], we reimplement an advanced EMI mutation

strategy guided by the Markov Chain Monte Carlo (MCMC) op-

timization procedure to explore the search space [41]. For each

new EMI variant p∗
k
, we compare it with variant pk and compute a

program distance, indicating how different they are (line 21). We ac-

cept p∗
k
with an acceptance ratio (line 22). This method is designed

to generate more diverse EMI mutations progressively since EMI

variants with high distance values will lead to a higher chance to

be kept [41]. We formulate this MCMC optimization in [8]. After

collecting all the program tuples with deviant outputs (line 23), we

resort to a manual study to comprehend the root causes of these

suspicious outputs.

4.2 Manual Inspection

As mentioned above, Csmith-generated C code computes a check-

sum of its global variables as the execution output. Once a deviant

output is identified, we manually pinpoint erroneous statements

causing such deviants in the decompiled C code. The manual in-

spection forms a typical debugging process: starting from a global

variable that yields a deviant value, we identify all of its assignments

and recursively backtrack the deviant values used for assignments

until we identify the root cause (i.e., the erroneous statements) in

the decompiled EMI variants.

This step is costly: examining and checking all suspicious find-

ings took two reverse engineering analysts about 180 man-hours.

Each analyst has an in-depth knowledge of reverse engineering and

rich experience in binary code analysis and CTF competitions. In

this way, we ensure the accuracy of our study and the credibility of

our findings to a great extent. We have reported our findings to the

developers, and some typical cases have been promptly confirmed

and to be fixed (see Sec. 5). Moreover, with about 350 man-hours,

we locate 13 buggy code fragments in open-source decompilers

that lead to erroneous statements in the decompiled C code (see

discussions in Sec. 5.1).

4.3 Study Setup

The proposed study is implemented in Python, with 3,707 LOC

(measured by cloc [23]). We now discuss challenges and practical

solutions involved in setting up this study.

Challenges for Recompilation. The standard EMI technique em-

ploys a straightforward testing oracle by comparing execution re-

sults of a seed program and its EMI variants. However, shortly our

findings will show that it is difficult to directly recompile the out-

puts of decompilers (see Sec. 5.2.2 for the details). Our study shows

that many undefined symbols (e.g., ELF binary-specific symbols)

commonly exist in the global data sections of the decompiled out-

puts. Below, we discuss solutions to address this issue.

Implementation of Instrument. We acknowledge the difficulty

of recompiling the decompilation outputs; to enable an automated

workflow for testing and empirical study, we seek to extract func-

tions from the decompiled C code and use the decompiled functions

to replace their corresponding code chunk in the source code of the

decompiler input (see łInstrumented Source Codež in Fig. 3). We

then execute the Csmith-generated C code and its instrumented

EMI variant and check for any execution result deviation.

The intuition is that typically within each decompiled function,

symbols (e.g., local variables) are defined in a complete manner,

and therefore, the whole chunk becomes a łclosure.ž In fact, as

just mentioned, the undefined symbols are mostly placed in global

data sections, and based on our observation, they usually do not

interfere with computations within each function. To perform this

extraction, we configure Csmith by bounding the maximum num-

ber of functions in its output as one (in addition to main). As will be

reported in our findings, this method revives the łrecompilabilityž

of modern decompilers when processing most C programs.

Handling Discarded Global Variable Names. Names of most

variables are discarded after compilation, and in the decompiled

outputs, variables are renamed meaninglessly (v0, v1, etc.). Al-

though doing so does not affect the usage of local variables, this

study requires to correctly resort the usage of global variables, since

global variables are frequently referred by Csmith-generated code

(recall that the execution result of a Csmith-generated program is

the checksum of its global variables).

We address this issue by creating a ghost local variable for each

global variable, and replace the usage of global variables with their

corresponding local variables. Consider the example below:

int ga;

void set_var(int la){

// synchronize global var. with local var.

ga = la;

}

void foo(){ // Csmith generated function

int la;

... // usage of ga are replaced by la

set_var(la);

// compute checksum of ga and print output

}

After compiling and decompiling, the local variable name (la)

is discarded; however, global variable ga will be updated before

exiting foo since its corresponding local variable in the decompiled

code is still kept as the parameter of set_var. We configure Csmith

to avoid the usage of C pointers, and therefore, we do not need

to resolve alias issues when identifying the usage of global variables.

Configurations.We use Csmith (ver. 2.3.0) [68] to generate seed

C programs. gcov (ver. 7.4.0) is employed to obtain code coverage
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information and to identify live code for EMI mutations. We com-

pile Csmith’s outputs with gcc (ver. 7.4.0) into 32-bit x86 binary

code with no optimization.

Tentative studies show that seed C programs with complex data

structures impede recompilation. Therefore, in this study (except

Sec. 5.2.2), we configure Csmith and ensure that its outputs contain

only a subset of C grammars. We exclude C struct, union, array, and

floating points. As mentioned in this section, we disable pointers to

simplify the manual study and avoid alias analysis when creating

ghost local variables for global variables. Note that while this config-

uration simplifies data structures, Csmith still generates programs

with highly complex control structures, arithmetic operations, and

type castings.

Intuitively, decompilation problems are more obvious for large

and complex software. However, we note that using large software,

while could likely provoke errors, is not feasible in this research. As

mentioned in Sec. 4.2, we manually inspect every erroneous decom-

piled code to understand which statement is decompiled wrongly.

This manual inspection already takes about 180 man-hours. Errors

in complex and large software could make the manual inspection

too costly or even infeasible. Nevertheless, our findings on real-

world decompilers are general enough to affect the decompilation

of any C code and therefore fixing our findings will presumably

promote the decompilation of large and complex C software.

Decompilers. Table 1 reports the decompilers used in our study.

IDA-Pro [34] and JEB3 [52] are both the state-of-the-art commer-

cial decompilers that have been widely used in many research and

industry projects. To strengthen the generalizability of our study,

we also evaluate RetDec [38] and Radare2 [2], two popular free

decompilers that are actively maintained by the community. The

implementation details of commercial decompilers are mostly ob-

scure to the public. In contrast, RetDec shares a very promising

vision to bridge binary code analysis with the LLVM ecosystem. It

is built as a reverse engineering frontend of the LLVM framework,

and users are allowed to implement their analysis and instrumen-

tation passes using LLVM. Radare2 recently integrates the Ghidra

decompiler [50] developed by NSA. The Ghidra plugin leverages

the front-end of Radare2 for disassembling, and use the Ghidra

decompiler (version 9.1) to convert the disassembled code into C

code. Our tentative test shows that Ghidra plugin has much better

decompilation accuracy than the native decompilation support of

Radare2 which is still immature.

These four decompilers, to the best of our knowledge and ex-

perience, represent the best two commercial and best two non-

commercial C decompilers. We indeed tentatively explored other

decompilers in our study. For instance, Snowman [5] is seen to

produce worse decompiled outputs compared with these four de-

compilers, and there is no manual provided [7].

Decompilers are generally designed for an łout-of-the-boxž us-

age. We cannot find options to configure optimizations (not like

compilers) or decompiling algorithms. We also cannot find docu-

ments shipped with these decompilers on how to configure them.

Hence, all decompilers are studied in the standard setting.

Statistics of Test Cases. Table 2 reports statistics of the C pro-

grams used in the study. We use Csmith to randomly generate

Table 1: Decompilers employed in the study.

Tool Name Information

IDA-Pro [34] Commercial
JEB3 [52] Commercial
RetDec [38] Free; maintained by the community
Radare2/Ghidra [2, 50] Free; maintained by the community and NSA

Table 2: Statistics of the C programs used in the study. Line

of code (LOC) is measured with cloc [23].

Total # of programs generated by Csmith 1,000
Total LOC in Csmith generated C programs 142,888
Total # of EMI variants 9,707
Total LOC in EMI variants 2,361,590

1,000 C programs. These 1,000 programs are the seed inputs of EMI

mutation for each decompiler. The total number of generated EMI

variants is 9,707 (see Table 3 for the breakdown). As mentioned in

this section, we configured Csmith to produce one function (in ad-

dition to main) for each C code it generates. Each seed program (on

average 148 LOC) contains a medium size function with presumably

complex control structures and many global variables.

5 FINDINGS

Table 3 provides an overview of our findings. Out of in total 9,706

test cases (exclude one decompilation failure), we find 408 (4.2%)

recompilation failures. While most decompiled C code can be suc-

cessfully recompiled and executed, 1,014 (430+584; 10.4%) outputs

are erroneous: the decompiled C code shows deviant execution

results compared with the seed. JEB3 outperforms the other three

decompilers, given less decompilation defects (30+9). Despite one

decompilation failure in JEB3 (errors thrown by the decompiler),

all the cases can be decompiled smoothly.

We further put these decompilation defects into five categories

(under the łCharacteristicsž column) by identifying and classify-

ing erroneous statements in decompiled C code. As mentioned in

Sec. 4.2, we form a group of reverse engineering analysts to classify

the findings manually. This ensures the accuracy of our research.

Nevertheless, we admit the difficulty, given the large number and

highly-optimized decompiled C code (see Sec. 5.3.4 for correspond-

ing discussion). Therefore, we do classification at our best effort.

The first three columns stand for errors (in total 861) found in types,

variables, and control flow structures of decompiled C code. We

also find 147 errors that are presumably due to decompiler opti-

mizations. łOthersž report 6 errors that are likely due to bugs in

the IR-to-C translation stage. We give further discussions and case

study regarding each category in Sec. 5.3.

Processing Time. Our experiments are launched on a machine

with Intel Core i5-8500 3.00 Hz CPU and 4 GB memory. Although

processing time is in general not a concern for decompilation, we

record and report that it takes on average 5.0 CPU seconds to de-

compile one case. We interpret that de facto decompilers perform

efficiently in processing commonly-used binary code.

Confirmation with the Decompiler Developers. We have re-

ported all the failures and defects found in this research (findings
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Table 3: Result overview. As depicted in Alg. 1, if a Csmith generated program p0 has inconsistent functionality compared

with its decompiled output p∗0 , we skip the EMI mutation on p0 and directly report it as one decompilation defect (the łCsmith

Outputž subcolumn). Otherwise, we generate 30 EMI mutations from each p0 as EMI testing inputs. The total number of EMI

mutations are reported in ł# of EMI Variants.ž We manually analyzed each defect and summarized findings in łCharacteris-

ticsž.

Tool Name # of EMI
Variants

Decompilation
Failures

Recompilation
Failures

Decompilation Defects Characteristics of Decompilation Defects

Csmith Output EMI Variant
Type Variable Control-Flow

Optimization Others
Recovery Recovery Recovery

IDA-Pro 3,786 0 208 1 69 2 0 4 61 3
JEB3 2,510 1 13 30 9 25 7 0 4 3
RetDec 907 0 187 346 380 315 338 25 48 0
Radare2/Ghidra 2,504 0 0 53 126 35 87 23 34 0

Total 9,707 1 408 430 584 377 432 52 147 6

in Table 3) to the decompiler developers. To seek for prompt con-

firmation and insights into our results, we also select at least one

example in each defect category and present to the developers.

The JEB3 developer was responsive in confirming the selected

cases for each defect category. He even mentioned to tentatively

include some findings in the upcoming major update. To quote him:

łthanks so much for all that feedback!! - next update ...

I hope to include some of your reports! ...ž

We also quote the IDA-Pro author’s feedback below:

łWe internally use Csmith to test the decompiler and

we know that our decompiler can not handle all cases

yet. We are working on them.ž

We interpret that the IDA-Pro developers certainly care about

the functional correctness of decompilation. At the time of writing,

we are waiting for the response from RetDec and Radare2/Ghidra.

Overall, we understand that these decompilers are developed by

either small companies (like the commercial ones) or volunteers,

and it certainly takes a while for confirmation and to incorporate

our findings into the scheduled development pipeline. Nevertheless,

responses from IDA-Pro and JEB3 developers indicate that they

take our findings seriously.

5.1 Identify Buggy Code Fragments in
Decompilers

We seek to pinpoint the buggy code fragments in decompilers

that lead to these defects. IDA-Pro and JEB3 are commercial tools

and therefore we have no way of performing root cause analysis.

Radare2/Ghidra and RetDec both have source code available on-

line, although their accompanying documents and code comments

are merely provided. At this step, we spent extensive manual ef-

forts (over six weeks; in total about 350 man-hours) to analyze

all 913 (187 + 346 + 380) decompiler flaws detected from RetDec

(in total 178,732 LOC), and all 179 (53 + 126) decompiler flaws in

Radare2/Ghidra (the Ghidra plugin has 112,999 LOC). As reported

in Table 4, 13 buggy code fragments are found from these two

decompilers.2 To clarify potential confusions on Table 4, recall to

decide the łcharacteristicsž of decompilation defects, we manually

analyzed decompiled C code w.r.t. its input seed. We summarized

erroneous code statements into five categories at our best effort

2This section reports and discusses high-level information in the main paper. Informa-
tion regarding each buggy code fragment, including their locations, descriptions and
samples erroneous outputs they could incur, can be found in [8].

Table 4: Buggy code fragments found in RetDec (3nd to

10th rows) and Radare2/Ghidra (11th to 17th rows). Column

names, simplified due to the limited space, shall be easily

figured by referring to Table 3.

Recompile Decompilation Defects
Total

Failure Type Var. Control. Opt.

Bug1 0 297 0 0 0 297
Bug2 0 0 338 0 0 338
Bug3 0 0 0 11 0 11
Bug4 0 18 0 14 4 36
Bug5 0 0 0 0 44 44
Bug6 177 0 0 0 0 177
Bug7 10 0 0 0 0 10

Total 187 315 338 25 48 913

Bug8 0 31 87 0 0 118
Bug9 0 0 0 6 10 16
Bug10 0 0 0 3 3 6
Bug11 0 1 0 5 0 6
Bug12 0 0 0 5 21 26
Bug13 0 3 0 4 0 7

Total 0 35 87 23 34 179

in Table 3. Nevertheless, with root cause analysis, we find that de-

compiler bugs may cause different errors in decompiled code. For

instance, Bug8 is a type recovery bug in Radare2/Ghidra, directly

generating 31 decompiled C programs with type errors. Further-

more, given local variables of wrong types, optimization may treat

these variables as part of other variables (see Sec. 5.3.2), outputting

87 decompiled C programs with missing variable errors.

All of these findings are logic bugs, causing erroneous outputs

rather than decompiler crash or abnormal termination. From these

13 bugs, 12 are found from the łmiddle stagež of decompilation

(Sec. 2.1) where decompilers perform high-level program represen-

tation recovery, while one (Bug13 found in Radare2/Ghidra) is in

the C code generation phase: unsigned shift operation in the Ghidra

IR was lifted into a signed shift in C code. From the 12 middle stage

bugs, four bugs are in the type recovery modules, two bugs are in

the variable recovery modules, and six bugs are in the optimization

modules. Also, while Radare2/Ghidra is stated to leverage the disas-

sembly infrastructure of Radare2 and bridge with Ghidra, we find

that Radare2/Ghidra łfreeridesž the type recovery utility of Radare2.

Bug8 in Radare2/Ghidra indeed roots from incorrectly recovered

variable types in Radare2.

5.2 Recompilation Study

We start by answeringRQ1: how difficult is it to recompile the outputs

of modern decompilers? To that end, we conduct a two-step study

482



How Far We Have Come: Testing Decompilation Correctness of C Decompilers ISSTA ’20, July 18–22, 2020, Virtual Event, USA

in this section. We first evaluate the recompilation of decompilers

by directly compiling their outputs. Given the general challenge in

the first step, we then resort to instrument the decompiled outputs

(with Instrument defined in Sec. 4.3) and analyze the remaining

recompilation failures reported in Table 3.

5.2.1 Full-Scale Recompilation. We first study full-scale recompila-

tion by directly recompiling the recovered high-level C code of de

facto decompilers. To do so, we use the default option of Csmith to

randomly generate 100 C programs and feed to the decompilers.3

We then recompile their outputs and collect compiler messages.

We report that we are unable to recompile any of the decompiled

outputs into functional executables. Plenty of undefined symbols

exist in the decompiled outputs, including ELF binary specific sym-

bols (e.g., symbols used for dynamic linkage), decompiler specific

symbols or undefined variables. In short, we interpret that outputs

of de facto decompilers are not directly recompilable, and more

importantly, by putting decompiler and executable specific symbols

in their outputs, recompilation seems not the top priority for de

facto decompilers (although łreadabilityž in the decompiled outputs

is also not well supported, as we will show in Sec. 5.3.4).

Therefore, in the rest of the section, we follow what has been

proposed in our study setup (Sec. 4.3) and discuss the recompilation

failures of the instrumented decompilation outputs. We also present

a corresponding discussion below in Sec. 5.2.3.

5.2.2 Recompilation Failure. We now discuss the causes of the re-

compilation failures reported in Table 3. We manually checked the

compiler errors for the 408 recompilation failures and identified

two key reasons that impede recompilation.

Erroneous Variable Recovery.We find many variable recovery

errors in the decompiled outputs. For instance, when decompiling

a C program with only one local variable with JEB3, the output is

translated into the following statement:

// source code

unsigned int a;

// decompiled code

unsigned int v0,v0;

Despite the difficulty to locate the buggy component in JEB3 that

causes such re-declaration issue, we report that similar problems

were found in a considerable number of JEB3’s outputs.

We also found recompilation failures due to incorrect recovery

of function call parameters (found in JEB3 and RetDec). Consider

the example below:

// source code

int a = 12;

int b = 10;

set_var(a,b);

// decompiled code

int a = 12;

int b = 10;

set_var(a);

where the decompiled output causes an inconsistency in the declara-

tion and invocation of function set_var. In fact, manual inspection

in Sec. 5.1 shows that all 187 recompilation failures of RetDec root

from two bugs (i.e., Bug6 and Bug7 in Table 4) in the function pro-

totype recovery module. In other words, fixing these two bugs of

function call parameter recovery would eliminate all 187 failures.

3To clarify potential confusions, these 100 C programs are only used as a quick check
on recompilation at this step. All the other testing and studies are from a set of 1,000
C programs, as explained in the study setup (Sec. 4.3).

Undefined Symbols. Despite that undefined symbols are mostly

eliminated in this new setting, still, such issues can be found in

IDA-Pro’s outputs. In particular, we report that ELF binary specific

symbols (e.g., symbols of Global Offset Table used for dynamic

linkage) seem to be placed in outputs of IDA-Pro commonly. In

contrast, the other three decompilers work generally well to avoid

the abuse of undefined symbols.

5.2.3 Result Implication. Our study on full-scale recompilation

(Sec. 5.2.2) shows that outputs of decompilers are still not directly

recompilable. However, one previously-ignored fact revealed in

this study is that generating recompilable code of many non-trivial

C programs is essentially the last mile of modern decompilers.

As shown in this research, after some syntax-level tweaks, most

decompiled outputs become recompilable. Radare2/Ghidra shows

highly encouraging findings with zero recompilation failure, and

both commercial decompilers have less than 5.0% recompilation

failure. IDA-Pro fails 208 cases by inserting extra ELF binary specific

symbols, most of which are used for dynamic linkage. Our study

further indicates the possibility to safely remove some of them since

the linker will need to create these symbols in the ELF executable

files when recompiling. Also, while RetDec has 187 recompilation

failures, our root cause analysis shows that these errors are due to

only two bugs in the function parameter recovery module, which

shall be fixed together smoothly.

Although academic researchers were generally believing that out-

puts of C decompilers are not for reuse and not even recompilable,

this study re-scopes this pessimistic stance by demonstrating that

after some systematic and straightforward syntax-level changes

(without any manual tweaks), modern C decompilers show decent

capability of recompiling non-trivial C programs (recall our C pro-

grams have relatively simple data structures but complex control

structures, arithmetic operations, and type castings). Therefore, we

summarize and present our first finding as follows:

Finding: By applying straightforward syntax-level

changes without any manual tweaks, modern C de-

compilers already show good support of recompila-

tion for many non-trivial C programs.

Existing research has shown a practical need to advocate the

łrecompilabilityž as a critical design goal, if not foremost, of decom-

pilers. This study shows that it requires only syntax-level changes

to revive the decompiled outputs of many non-trivial C codes. The

recompilability can drastically promote the reuse of legacy software,

and becomes the łnext big thingž in the community. Indeed, starting

from a piece of reassembleable assembly code by reusing existing

research tools [31, 64, 65], we envision the feasibility to deliberately

craft decompilation passes and deliver recompilability-preserving

decompilation, by making readability a secondary consideration

(e.g., preserving certain onerous instructions with inline assembly)

or framing it in terms of good faith effort.

5.3 Decompilation Defects

This section answers RQ2: what are the characteristics of typical

decompilation defects? Table 3 classifies all the deviant outputs into

five categories. In the rest of this section, we elaborate on typical

errors within each category.
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5.3.1 Type Recovery. The lack of fool-proof type recovery is one

key limit of existing decompilers. While for C code, not all the

type recovery failure breaks the semantics, in this study we flag a

considerable amount of recovered variable types breaking semantics

(in terms of both control and data flow). Consider an example below:

// source code

int i = 0;

for(i=6; i<-12; i-=6){

... // not reachable

}

// decompiled code

unsigned int i = 0;

for(i=6; i<-12; i-=6){

... // reachable

}

where the Csmith-generated C code has a for loop, but will execute

for zero iterations. Contrarily, the type recovery incorrectly anno-

tates i with unsigned int in the decompiled C code, and the loop

body becomes reachable in the decompiled output. In other words,

the type recovery alters the control flow, and further changes the

semantics.

We also find a considerable amount of type recovery failure that

leads to an erroneous data flow. Consider a case below found:

// source code

int32_t a = 0xaaffff;

// decompiled code

int16_t a = 0xaaffff;

In the decompiled output, the variable type int32_t is incor-

rectly recovered as int16_t. As a result, a is initialized with a

different value, since a variable of int16_t type can only take the

lowest 16 bits (0xffff).

As reported in Table 4, 315 type errors in C code decompiled

by RetDec root from two bugs (Bug1 and Bug4). Bug1 happens by

converting signed mov statements (movsx) in x86 assembly into IR

statements without correctly considering extensions and trunca-

tions. Bug4 missed certain function call parameters when analyzing

the call site stack push operations. Bug8, Bug11, and Bug13 cause in

total 35 type errors in Radare2/Ghidra. Bug8 cannot precisely infer

the łlengthž of stack variables, while Bug11 performs constant prop-

agation optimization and uses a ghost variable defined in Ghidra of

wrong type to replace original variables. As aforementioned, Bug13
lifts unsigned shift in IR into signed shift in C code.

5.3.2 Variable Recovery. We find 338 variable recovery issues from

RetDec, where this decompiler seems unable to recognize certain

variables and future leads to deviant execution outputs compared

with the seed programs. Root cause analysis shows that Bug2, a

bug on function parameter recovery, incurs all these 338 errors.

Radare2/Ghidra can also miss to identify certain local variables.

Root cause analysis shows that due to bugs in type recovery module

of Radare2 (i.e., Bug8), variable is incorrectly assigned with a larger

size (e.g., a 32-bit integer). Variables adjacent to this łlargerž variable

can overlap in the memory layout, and can be potentially deemed

as part of this łlargerž variable and is therefore optimized out.

We also find seven erroneous variable recoveries in JEB3 which

causes łundefined behaviorž in the decompiled C code. Consider a

simplified case:

unsigned int v0;

unsigned int v1 = v0 >> 16;

where v0 is defined yet uninitialized, leading to an indeterminate

value in v1. We have confirmed that the source code does not

contain any uninitialized local variables. In general, generating code

with undefined behavior is undesired for decompilers. Although

the root cause is yet to be determined, we suspect that v0 in the

above case is hardcoded in the output. We urge the decompiler

developers to avoid generating code exhibiting undefined behavior,

for instance, by initializing v0 with zero.

5.3.3 Control-Flow Recovery. We find a total of 52 deviant outputs

due to control-flow errors in the decompiled C code. We note that

after taking a close look at the buggy code fragments, all failures in

RetDec and Radare2/Ghidra are actually due to wrong type recovery

and optimization bugs. Consider a simplified input program below:

// condition generated by EMI

if (opaque_condition){ // evaluated to false

statement1; // not reachable

}

where the opaque_condition will be evaluated to false during

runtime. However, we report that the if condition was optimized

out in the decompiled program since the condition is incorrectly

evaluated to łtruež due to type recovery or optimization errors.

Hence, the unreachable branch becomes reachable, reflecting a

łcontrol-structurež error in the decompiled C code. We report that

Bug3−4 found in RetDec and Bug9−13 in Radare2/Ghidra all lead to

such issues, although they represent different buggy code fragments

in the type recovery and optimization modules.

We also find issues where the statements are mistakenly re-

ordered in IDA-Pro outputs. Consider the case below:

// source code

if (cond1)

statement1;

if (cond2)

statement2;

// decompiled code

if (cond2)

statement2;

if (cond1)

statement1;

where in the decompiled outputs, two if statements are reordered,

altering execution flow, and leading to deviant execution outputs.

5.3.4 Optimization. Academic researchers design decompiler opti-

mizations to make decompiled code close to the input source code

and thus more łreadablež [17, 67]. However, optimizations, particu-

larly the erroneous constant folding and constant propagation, can

make decompiled C code mal-functional. As aforementioned, from

the 13 bugs reported in Table 4, six are within the optimization

modules of decompilers, for instance performing constant folding

without correctly taking bit length into account (Bug5), or incor-

rectly using a 32-bit ghost variable defined in Ghidra to replace a

16-bit variable during constant propagation (Bug11).

In addition to errors, we note that the overly (and wrongly)

optimized C code often becomes too concise. Such aggressive opti-

mization has diminished the readability of decompiled C code to

a great extent, and has caused a major challenge for our manual

inspection (Sec. 5.1). While łreadabilityž could be a subjective crite-

rion, inspired by our observation, we measure the readability by

1) reporting the average LOC for the decompiled code, and 2) ana-

lyzing the code similarity between the decompiled outputs and the

input programs. We leverage a popular software similarity analyzer,

moss [6], to measure code similarity. The similarity score (ranging

from 0 to 1.0; higher is better) indicates how close the decompiled

outputs and inputs are. The results are reported as follows:
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IDA-Pro JEB3 RetDec Radare2/Ghidra

LOC 90 85 54 104
Similarity Score 0.51 0.50 0.54 0.49

Decompiled programs are highly concise, in the sense that their

average LOC is much lower than the corresponding LOC of input

programs (on average 143; see Table 2). Even worse, the average

similarity score between decompiled outputs and input programs

is also low. In summary, we interpret that the highly-optimized

decompiled outputs obstruct the readability notably (see further

discussions in Sec. 5.5).

Also, the above results may (incorrectly) indicate that decompil-

ers łconsistentlyž optimize their outputs, since their average similar-

ity scores w.r.t. reference inputs are close. Nevertheless, Sec. 6 will

show that indeed for an input executable, its corresponding outputs

of four decompilers have very different representations, indicating

a strong need for regulating optimization and code generation.

5.4 Others

We find six errors in the łOthersž category: we report that the

decompiled outputs have syntax-level difference (e.g., arithmetic

operators) compared with the input source code. While the root

cause is unknown (since these two decompilers are closed source),

we suspect such issues are due to sloppy errors in the C statement

translation stage, which could be fixed by developers easily.

5.5 Result Implication

In this section, we present discussion and result implication to

answer research question RQ3: what insights can we deduce from

analyzing the decompilation defects?

Support of Cutting-Edge Research Outputs. We have found

plenty of type, variable, and control structure errors in the decom-

piled C code, and explained their corresponding buggy fragments

in the decompilers. Although academic researchers are believed to

have mostly addressed such reverse engineering challenges (since

we are evaluating non-trivial but not extreme cases), one obser-

vation is that modern decompilers have not fully implemented

those well-established research products. For instance, while the

state-of-the-art research has been working on function prototype

recovery for years and achieved promising results (e.g., close to

99% accuracy for function recognition in x86 binaries [14, 20, 58]),

still, the de facto decompilers (e.g., RetDec) have not implemented

the proposed methods and therefore make lots of errors in re-

covering function prototypes and parameters. Also, recovering

types from x86 binary code have been formulated as a recursively-

constrained type inference approach with sub-typing, recursive

types, and polymorphism [42, 49]. Contrarily, C decompilers, from

the disclosed documents and our observation, only implement sim-

ple inference techniques combined with heuristics and predefined

patterns [33, 38, 53].

Finding: The de facto decompilers still have not fully

leveraged the research outputs in this field to improve

reverse engineering accuracy.

Although research products cannot be used to address every cor-

ner case, most defects exposed in this study, such as RetDec’s obvi-

ous limit in recovering function prototypes, shall be fixed smoothly.

Overall, while modern decompilers perform decently in recovering

high-level source code, we urge developers to embrace research

products in this field to revamp the design and solve problems ex-

posed in this study.

Optimization. As disclosed in Sec. 5.3.4, our study on de facto

decompilers uncovers the following finding:

Finding: De facto decompilers extensively simplify

their outputs, even though readability and decompila-

tion correctness are undermined simultaneously.

We encountered major difficulty when manually inspecting er-

roneous outputs that are highly simplified. We suspect that if it

was not even presentable for us Ð reverse engineering analysts

Ð to comprehend the decompiled outputs, it should be accurate

to assume the outputs are often not readable enough for layman

users. This clearly indicates a mismatch between expectations in

the literature and the actual capabilities of modern decompilers.

Note that in academia, the optimization module of decompilers is

designed following the principle of enhancing the readability and

making it close to the original C code [17, 67].

Although optimization can help to simplify code emitted by

decompilation passes and can usually output one succinct high-

level statement by folding several statements, we advocate fine-

grained calibration. Currently, modern decompilers seem to go

too far and notably hurt readability of their outputs. Meanwhile,

motivated by how compiler optimizations are provided for usage,

we urge decompiler developers to make their products configurable

to flexibly select optimization passes.

6 DISCUSSION

Limitations and Threat to Validity.We now give a discussion of

validity and shortcomings of this paper’s approach. In this research,

construct validity denotes the degree to which our metrics actu-

ally reflect the correctness of C decompilers. Overall, we conduct

dynamic testing and manual inspection to study the outputs of

de facto decompilers. Hence, while this practical approach detects

decompiler bugs and reveals inspiring findings, the most possible

threat is that our testing approach cannot guarantee the functional

correctness of decompilers. We clarify that our work roots the same

assumption as previous works in this line of research that aim to

comprehend the functionality of reverse engineering toolchains

with dynamic testing rather than static verification [36, 51].

We check the correctness of decompiled C code by comparing its

execution output with its reference input program. Considering the

execution output of each Csmith generated program is a checksum

of all its global variables, decompilation errors on global data or

its involved computations can be faithfully exposed. However, a

possible threat is that defects can be neglected in the decompiled

C code, in case they do not contribute to the execution output.

One promising mitigation is to enable a static viewpoint of the

decompiled output. Instead of executing the decompiled code, we

envision opportunities to perform whole-program comparison and

pinpoint inconsistency. We leave exploring this direction for future

work.

Besides, there exists the potential threat that the proposed decom-

piler testing framework may not adapt to other types of programs,
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since the conducted research focuses on C code decompilation. Nev-

ertheless, we mitigate this threat to external validity by designing

an approach that is language and platform independent. As a result,

our approach is applicable to other settings outside the current

scope. We believe the proposed technique is general, and we give

further discussions regarding other decompilation settings soon in

this section.

Decompiler Developers’ Responsibility. We consider that de-

velopers should take the responsibility to constructively address the

findings in this research. Our work serves as the first and systematic

effort to provide guidelines. In Sec. 5.5, our findings have shown

that modern decompilers still have not leveraged the full potential

of research outputs. Our research sheds light on where develop-

ers can start to enhance their products, e.g., avoiding extensively

simplifying the decompiled C code (see Sec. 5.3.4).

Looking ahead, we also advocate decompiler developers to em-

brace breakthroughs of łsemantics-preservingž reverse engineer-

ing [17, 31, 47, 64, 65]. Therefore, decompiled outputs could become

fool-proof łrecompilablež in the first place. We also envision the

need to deliver more principled techniques to verify the functional

correctness of decompilation. Meeting this need will have a promi-

nent, long-term impact in the reverse engineering community.

Cross Comparison of Decompiled CCode.Careful readers may

wonder the feasibility of conducting a static łcross comparisonž,

by decompiling the same executable with a set of decompilers and

identifying differences in their outputs. However, we note that

decompiled C code can have drastically different representations

since different decompilers implement their own tactics and trans-

lation templates (although they share identical semantics). Here,

we compile 500 programs randomly generated by Csmith into exe-

cutable files. For each executable file, we use four decompilers to

decompile it and cross compare the similarity (also with moss [6])

of four decompiled C code. We report the average similarity score

as follows:

IDA-Pro JEB3 RetDec Radare2/Ghidra

IDA-Pro ✕ 0.73 0.69 0.66
JEB3 ✕ ✕ 0.68 0.65

RetDec ✕ ✕ ✕ 0.68
Radare2/Ghidra ✕ ✕ ✕ ✕

The average cross similarity score is indeed low (on average 0.68),

which sheds light on practical needs to advocate more consistent

representations and regulations. Overall, we leave it as one future

work to explore practical methods to perform cross comparison,

for instance by extracting certain łsemantics-levelž invariants.

Other Settings. The main focus of this study is C decompilation,

one challenging and fundamental task commonly encountered in

real-world cybersecurity and software re-engineering missions.

While the current experiments is conducted on x86 platforms, given

popular decompilers like IDA-Pro and RetDec can handle different

processors and formats (e.g., ARM and NIPS), we envision opportu-

nities for the research community to generalize our findings, since

the key issues, including both recompilation and decompilation

defects, are mostly platform and language independent.

Decompiling bytecode (e.g., Android apps) is easier, and the qual-

ity of decompiled code is generally deemed as higher. Indeed, the

Android repackaging attack has become an łout-of-the-boxž prac-

tice, for which correctly decompiling bytecode is the pre-requisite.

In contrast, decompiling non-trivial C++ code, for instance recov-

ering its class hierarchy, is still an open problem [56]. We leave it

as one further work, to generalize methodologies proposed in this

work on studying other popular decompilation settings.

7 RELATED WORK

Testing techniques have been used to measure static reverse engi-

neering tools. For instance, differential testing has been used to

validate disassemblers [51]. Recent research uses symbolic equiva-

lence checks (with symbolic execution and constraint solving) to

pinpoint bugs in IR lifters of binary executables [24, 36]. The secu-

rity community has also conducted remarkable empirical studies

regarding the accuracy and usage scenarios of de facto disassem-

blers [11].

State-of-the-art dynamic reverse engineering activities mostly use

symbolic execution techniques and virtual machine (VM)-based

monitoring to capture abnormal and malicious behaviors of suspi-

cious binary code. Existing research has proposed various testing

techniques to examine the security and reliability of these dynamic

reverse engineering tools. Red pill testing [44, 45, 57] leverages the

random or differential testing (typically with a black-box setting)

to compare the behavior of a VM and that of a physical machine

when executing with the same input. Recent research has promoted

the testing of a low-confidential emulator with inputs generated

by analyzing a highly confidential emulator [43].

Existing research has laid a solid foundation on testing static

and dynamic reverse engineering tools. However, a thorough and

complete testing of decompilers is still the missing piece in the

understanding of today’s reverse engineering landscape. There is a

demanding need to gain insights into how much of a problem de-

compilation is, given its indispensable role in building cybersecurity

and software reuse applications.

8 CONCLUSION

We have performed a systematic study to investigate decompilation

correctness of modern C code decompilers. Our large-scale evalua-

tion on four popular commercial and free decompilers successfully

found considerable decompiler flaws. In addition, we elaborately

explained findings and summarized lessons we have learned from

this study. We show that modern C decompilers have been progres-

sively improved to generate quality outputs. Nevertheless, some

classic reverse engineering challenges, including type recovery and

optimization, still frequently impede modern decompilers from gen-

erating well-formed outputs. This work could provide guides for

researchers and industry hackers that aim to use and improve C de-

compilers, and is presumably adaptable to test other decompilation

settings.
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